We demonstrate a quasinoncontact photoacoustic imaging method using a homodyne interferometer with a long coherence length laser. The generated photoacoustic signal is detected by a system that is locked at its maximum sensitivity through the use of balanced detection and zero-crossing triggering. The balanced detector is substantially equalized, so its output is zero when the system reaches the maximum sensitivity. The synchronization approach is used to trigger the excitation and detection of the photoacoustic signal. The system is immune to ambient vibrations. A thin water layer on the sample surface is used to reduce the effect of the rough tissue surface. The performance of the system is demonstrated by in vivo imaging of the microvasculature in mouse ears.
Segmentation of layers in retinal images obtained by optical coherence tomography (OCT) has become an important clinical tool to diagnose ophthalmic diseases. However, due to the susceptibility to speckle noise and shadow of blood vessels etc., the layer segmentation technology based on a single image still fail to reach a satisfactory level. We propose a combination method of structure interpolation and lateral mean filtering (SI-LMF) to improve the signal-to-noise ratio based on one retinal image. Before performing one-dimensional lateral mean filtering to remove noise, structure interpolation was operated to eliminate thickness fluctuations. Then, we used boundary growth method to identify boundaries. Compared with existing segmentations, the method proposed in this paper requires less data and avoids the influence of microsaccade. The automatic segmentation method was verified on the spectral domain OCT volume images obtained from four normal objects, which successfully identified the boundaries of 10 physiological layers, consistent with the results based on the manual determination.
We demonstrate a noncontact photoacoustic imaging (PAI) system in which an optical interferometer is used for ultrasound detection. The system is based on a modified optical-fiber Michelson interferometer that measures the surface displacement caused by photoacoustic pressure. A synchronization method is utilized to keep its high sensitivity to reduce the influence of ambient vibrations. The system is experimentally verified by imaging of a phantom. The experimental results indicate that the proposed system can be used for noncontact PAI with high resolution and high bandwidth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.