HighlightMaize genotypes with reduced crown root number have superior water capture, growth, and yield under drought.
Increasing grazing pressure and climate change affect nitrogen (N) dynamics of grassland ecosystems in the Eurasian steppe belt with unclear consequences for future delivery of essential services such as forage production, C sequestration, and diversity conservation. The identification of key processes responsive to grazing is crucial to optimize grassland management. In this comprehensive case study of a Chinese typical steppe, we present an in‐depth analysis of grazing effects on N dynamics, including the balance of N gains and losses, and N cycling. N pools and fluxes were simultaneously quantified on three grassland sites of different long‐term grazing intensities. Dust deposition, wind erosion, and wet deposition were the predominant but most variable processes contributing to N losses and gains. Heavy grazing increased the risk of N losses by wind erosion. Hay‐making and sheep excrement export to folds during nighttime keeping were important pathways of N losses from grassland sites. Compared to these fluxes, gaseous N losses (N2O, NO, N2, and NH3) and N losses via export of sheep live mass and wool were of minor relevance. Our N balance calculation indicated mean annual net N losses of 0.9 ± 0.8 g N/m2 (mean ± SD) at the heavily grazed site, whereas the long‐term ungrazed site was an N sink receiving mean annual inputs of 1.8 ± 1.1 g N/m2, mainly due to dust deposition. Heavy grazing reduced pool sizes of topsoil organic N, above‐ and belowground biomass, and N fluxes with regard to plant N uptake, decomposition, gross microbial N turnover, and immobilization. Most N‐related processes were more intensive in seasons of higher water availability, indicating complex interactions between land use intensity and climate variability. The projected increase of atmospheric N depositions and changes in rainfall pattern imposed by land use change will likely affect N sink–source pathways and N flux dynamics, indicating high potential impact on grassland ecosystem functions. Land use practices will be increasingly important for the management of N dynamics in Chinese typical steppe and, therefore, must be considered as key component to maintain, restore or optimize ecosystem services.
Nitrogen (N) enrichment often increases aboveground net primary productivity (ANPP) of the ecosystem, but it is unclear if belowground net primary productivity (BNPP) track responses of ANPP. Moreover, the frequency of N inputs may affect primary productivity but is rarely studied. To assess the response patterns of above‐ and belowground productivity to rates of N addition under different addition frequencies, we manipulated the rate (0–50 g N m−2 year−1) and frequency (twice vs. monthly additions per year) of NH4NO3 inputs for six consecutive years in a temperate grassland in northern China and measured ANPP and BNPP from 2012 to 2014. In the low range of N addition rates, BNPP showed the greatest negative response and ANPP showed the greatest positive responses with increases in N addition (<10 g N m−2 year−1). As N addition increased beyond 10 g N m−2 year−1, increases in ANPP dampened and decreases in BNPP ceased altogether. The response pattern of net primary productivity (combined above‐ and belowground; NPP) corresponded more closely to ANPP than to BNPP. The N effects on BNPP and BNPP/NPP (fBNPP) were not dependent on N addition frequency in the range of N additions typically associated with N deposition. BNPP was more sensitive to N addition frequency than ANPP, especially at low rates of N addition. Our findings provide new insights into how plants regulate carbon allocation to different organs with increasing N rates and changing addition frequencies. These root response patterns, if incorporated into Earth system models, may improve the predictive power of C dynamics in dryland ecosystems in the face of global atmospheric N deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.