Herein, we report the effect of flavonoids from Lycium barbarum leaves (LBLF) on myofibrillar proteins (MP) in minced mutton during chilled storage (4 ± 1°C). High performance liquid chromatography (HPLC) analysis showed that the total flavonoid content in LBLF was 322.0 mg/g, of which the rutin content was 297.6 mg/g. The effect of 0.5%, 1.0%, and 1.5% LBLF on the structure and thermodynamic properties of MP in minced mutton was studied systematically. Tyrosine and tryptophan of MP samples treated with LBLF were converted from an exposed state to an embedded state. The interaction between LBLF and MP quenched the internal fluorescence, and improved the thermal stability of MP. The addition of LBLF significantly reduced the carbonyl and sulfhydryl contents of MP (p < 0.05), and decreased the surface hydrophobicity of MP in a dose-dependent manner. Our results indicate that LBLF can combine with free radicals produced by protein oxidation, block the free radical oxidation chain reaction, and inhibit the oxidation of MP. Therefore, LBLF may have great potential as a natural antioxidant in meats and meat products during chilled storage. Practical Application: Lycium barbarum is widely distributed in China, especially in Qinghai and Ningxia. The results of this study suggest that flavonoids extracted from L. barbarum leaves may be an effective natural antioxidant for the preservation of meats and meat products.
Lycium barbarum leaves are a kind of vegetable, and modern nutrition studies have found that they have an anti-aging function. Our study aims to investigate the anti-aging effects of Lycium barbarum leaf flavonoid (LBLF) extracts and its underlying molecular mechanism. LBLFs were purified using D101 and polyamide resin, characterized by ultraperformance liquid chromatography coupled with mass spectrometry, and administered to hydrogen peroxide (H2O2)-treated human umbilical vein endothelial cells (HUVECs) and Caenorhabditis elegans. Appropriate enrichment conditions were optimized through dynamic adsorption and desorption experiments, the content of flavonoids reached 909.84 mg/g, rutin and kaempferol being the main ones. LBLFs attenuated H2O2-induced HUVEC apoptosis, decreased reactive oxygen species and malondialdehyde production levels, increased superoxide dismutase, glutathione peroxidase and catalase activities. Furthermore, pre-treatment with LBLF increased mRNA expression of erythropoietin (EPO) and heme oxygenase-1 (HO-1) via the mitogen-activated protein kinase (MAPK) signaling pathway in HUVECs. Compared with 100 µM rutin monomer, LBLF prolonged the lifespan of Caenorhabditis elegans, enhanced their mobility in middle life stages and upregulated expression of sod-2, gcs-1 and skn-1 genes, which indicated that the anti-aging effects of LBLF were due to its redox-modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.