The insulin-like growth factor (IGF)-axis was implicated in cancer progression and identified as a clinically important therapeutic target. Several IGF-I receptor (IGF-IR) targeting drugs including humanized monoclonal antibodies have advanced to phase II/III clinical trials, but to date, have not progressed to clinical use, due, at least in part, to interference with insulin receptor signaling and compensatory signaling by the insulin receptor (IR) isoform A that can bind IGF-II and initiate mitogenic signaling. Here we briefly review the current state of IGF-targeting biologicals, discuss some factors that may be responsible for their poor performance in the clinic and outline the stepwise bioengineering and validation of an IGF-Trap—a novel anti-cancer therapeutic that could bypass these limitations. The IGF-Trap is a heterotetramer, consisting of the entire extracellular domain of the IGF-IR fused to the Fc portion of human IgG1. It binds human IGF-I and IGF-II with a three-log higher affinity than insulin and could inhibit IGF-IR driven cellular functions such as survival, proliferation and invasion in multiple carcinoma cell models in vitro. In vivo, the IGF-Trap has favorable pharmacokinetic properties and could markedly reduce metastatic outgrowth of colon and lung carcinoma cells in the liver, outperforming IGF-IR and ligand-binding monoclonal antibodies. Moreover, IGF-Trap dose-response profiles correlate with their bio-availability profiles, as measured by the IGF kinase receptor-activation (KIRA) assay, providing a novel, surrogate biomarker for drug efficacy. Our studies identify the IGF-Trap as a potent, safe, anti-cancer therapeutic that could overcome some of the obstacles encountered by IGF-targeting biologicals that have already been evaluated in clinical settings.
Pediatric high-grade gliomas (pHGG) accounts for approximately 8–12% of primary brain tumors in children. Prognosis is poor, with a median survival of 9–15 months. Insulin-like growth factor 1-receptor (IGF-1R) gene amplifications have been identified in high-grade gliomas and may contribute to its highly aggressive phenotype, but the effect of IGF inhibitors on pHGG is yet to be determined. In the present study, we analyzed the response of patient-derived pediatric high-grade glioma cells to a novel IGF-1R inhibitor, the IGF-Trap. Using immunohistochemistry, we found that IGF-1R was localized to both the nucleus and cell membrane in different pHGG patient-derived xenograft (PDX) lines under basal conditions. In response to ligand binding, nuclear levels of the receptor increased, and this was associated with the transcriptional upregulation of both the receptor and cyclin D1, suggesting that IGF-1R could regulate its own expression and cell cycle progression in these cells. Insulin-like growth factor-1 (IGF-1) increased the proliferation of the pHGG cells DIPG13 and SGJ2, and this could be blocked by the addition of the IGF-Trap. The IGF-Trap reduced the colony formation of these cells in an optimal growth medium and impeded the ability of IGF-1 to rescue DIPG13 cells from starvation-induced apoptosis. Collectively, these results implicate the IGF-1 axis in the regulation of cell cycle progression, cellular proliferation, and cell survival in pHGG, and identify the IGF-axis as a target and the IGF-Trap as a potential inhibitor of this axis in pHGG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.