Data mining (DM), as a new technology in the information age, is applied to modern audit work, which is more effective than traditional audit methods. In view of the problems existing in traditional tax audit methods, such as the huge amount of audit data, limited knowledge and experience of auditors, and difficult tracking of audit data, this paper uses computer-aided audit technology to collect, clean up, convert, and analyze data, comprehensively uses data warehouse technology, pattern recognition method, data analysis method, and anomaly detection theory as research methods, and makes a comprehensive study on tax affairs. Then, a random forest (RF) algorithm is used to establish the classification and identification model of audit risk. Second, based on the RF algorithm, the audit early warning framework of accounts receivable and payable in enterprise financial sharing mode is constructed, and the financial data and business data in enterprise financial sharing mode are extracted by using big data technology. The comparison of the results shows that the RF model has higher prediction accuracy and better robustness, which can better improve the antirisk ability of listed companies in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.