Glyptostrobus pensilis, belonging to the monotypic genus Glyptostrobus (Family: Cupressaceae), is an ancient conifer that is naturally distributed in low-lying wet areas. Here, we report the complete chloroplast (cp) genome sequence (132,239 bp) of G. pensilis. The G. pensilis cp genome is similar in gene content, organization and genome structure to the sequenced cp genomes from other cupressophytes, especially with respect to the loss of the inverted repeat region A (IRA). Through phylogenetic analysis, we demonstrated that the genus Glyptostrobus is closely related to the genus Cryptomeria, supporting previous findings based on physiological characteristics. Since IRs play an important role in stabilize cp genome and conifer cp genomes lost different IR regions after splitting in two clades (cupressophytes and Pinaceae), we performed cp genome rearrangement analysis and found more extensive cp genome rearrangements among the species of cupressophytes relative to Pinaceae. Additional repeat analysis indicated that cupressophytes cp genomes contained less potential functional repeats, especially in Cupressaceae, compared with Pinaceae. These results suggested that dynamics of cp genome rearrangement in conifers differed since the two clades, Pinaceae and cupressophytes, lost IR copies independently and developed different repeats to complement the residual IRs. In addition, we identified 170 perfect simple sequence repeats that will be useful in future research focusing on the evolution of genetic diversity and conservation of genetic variation for this endangered species in the wild.
The aluminum (Al) cation Al3+ in acidic soil shows severe rhizotoxicity that inhibits plant growth and development. Most woody plants adapted to acidic soils have evolved specific strategies against Al3+ toxicity, but the underlying mechanism remains elusive. The four-carbon amino acid gamma-aminobutyric acid (GABA) has been well studied in mammals as an inhibitory neurotransmitter; GABA also controls many physiological responses during environmental or biotic stress. The woody plant hybrid Liriodendron (L. chinense × tulipifera) is widely cultivated in China as a horticultural tree and provides high-quality timber; studying its adaptation to high Al stress is important for harnessing its ecological and economic potential. Here, we performed quantitative iTRAQ (isobaric tags for relative and absolute quantification) to study how protein expression is altered in hybrid Liriodendron leaves subjected to Al stress. Hybrid Liriodendron shows differential accumulation of several proteins related to cell wall biosynthesis, sugar and proline metabolism, antioxidant activity, cell autophagy, protein ubiquitination degradation, and anion transport in response to Al damage. We observed that Al stress upregulated glutamate decarboxylase (GAD) and its activity, leading to increased GABA biosynthesis. Additional GABA synergistically increased Al-induced antioxidant enzyme activity to efficiently scavenge ROS, enhanced proline biosynthesis, and upregulated the expression of MATE1/2, which subsequently promoted the efflux of citrate for chelation of Al3+. We also showed similar effects of GABA on enhanced Al3+ tolerance in Arabidopsis. Thus, our findings suggest a function of GABA signaling in enhancing hybrid Liriodendron tolerance to Al stress through promoting organic acid transport and sustaining the cellular redox and osmotic balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.