Methane conversion strategies that protect methanol via in situ esterification achieve higher yields compared to direct methane conversion without product protection; however, most of these high-yield systems operate under unfavorable conditions. To date, there is very limited work in developing heterogeneous catalysts for methane-to-methyl-ester conversion, and studies demonstrating the activity of manganese for methane conversion are limited. We have prepared a series of silica-, titania-, and zirconia-supported manganese catalysts and measured the activity of these catalysts for the aerobic conversion of methane to methyl trifluoroacetate in diluted trifluoroacetate acid. The silica-supported catalyst exhibits high overall activity, but significant amounts of homogeneously active manganese are observed. Titania- and zirconia-supported manganese catalysts catalyze the reaction heterogeneously with activities up to 613 μmol gcat –1 h–1 and show nondetectable leaching. Manganese oxide is poorly dispersed on titania and zirconia, whereas high dispersion is realized on silica. This work demonstrates a facilely synthesized supported manganese catalyst that converts methane heterogeneously in satisfactory yields under improved conditions in a diluted acid, compared to those of conventional methane-to-methyl-ester systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.