The monkeypox epidemic has attracted global attention to poxviruses. The cytoplasmic replication of poxviruses requires extensive protein synthesis, challenging the capacity of the endoplasmic reticulum (ER). However, the role of the ER in the life cycle of poxviruses is unclear. In this study, we demonstrate that infection with the lumpy skin disease virus (LSDV), a member of the poxvirus family, causes ER stress in vivo and in vitro, further facilitating the activation of the unfolded protein response (UPR). Although UPR activation aids in the restoration of the cellular environment, its significance in the LSDV life cycle remains unclear. Furthermore, the significance of ER imbalance for viral replication is also unknown. We show that LSDV replication is hampered by an unbalanced ER environment. In addition, we verify that the LSDV replication depends on the activation of PERK‐eIF2α and IRE1‐XBP1 signaling cascades rather than ATF6, implying that global translation and reduced XBP1 cleavage are deleterious to LSDV replication. Taken together, these findings indicate that LSDV is involved in the repression of global translational signaling, ER chaperone transcription, and ATF6 cleavage from the Golgi into the nucleus, thereby maintaining cell homeostasis; moreover, PERK and IRE1 activation contribute to LSDV replication. Our findings suggest that targeting UPR elements may be applied in response to infection from LSDV or even other poxviruses, such as monkeypox.
Poxviruses have been associated with humans for centuries. From smallpox to mpox to lumpy skin disease virus (LSDV), members of the poxvirus family have continued to threaten the lives of humans and domestic animals. A complete understanding of poxvirus-mediated cellular processes will aid in the response to challenges from the viruses. In this study, we demonstrate that LSDV infection results in an abnormal ultrastructure of the endoplasmic reticulum (ER) lumen in primary bovine embryonic fibroblast (BEF) cells, and we further show that an ER imbalance occurs in LSDV-infected BEF cells. Additionally, we believe that ER stress-related apoptosis plays a role in the late apoptosis of BEF cells infected with LSDV, primarily through the activation of the CCAAT/enhancer binding protein homologous protein (CHOP)-Caspase-12 signal. In addition to cell apoptosis, a further investigation showed that LSDV could also activate autophagy in BEF cells, providing additional insight into the exact causes of LSDV-induced BEF cell death. Our findings suggest that LSDV-induced BEF cell apoptosis and autophagy may provide new avenues for laboratory diagnosis of lumpy skin disease progression and exploration of BEF cell processes.
The cytoplasmic replication of poxviruses requires extensive protein synthesis, challenging the capacity of the endoplasmic reticulum (ER). However, the role of the ER in the life cycle of poxviruses is unclear. In this study, we demonstrate that infection with the lumpy skin disease virus (LSDV), a poxvirus, causes ER stress in vivo and in vitro, further facilitating the activation of the unfolded protein response (UPR). Although UPR activation aids in the restoration of the cellular environment, its significance in the LSDV life cycle remains unclear. Furthermore, the role of ER imbalance for viral replication is also unknown. We show that LSDV replication is hampered by an unbalanced ER environment. In addition, we verify that the LSDV replication depends on the activation of PERK-eIF2α and IRE1-XBP1 signaling cascades rather than ATF6, implying that global translation and XBP1 cleavage are deleterious to LSDV replication. Our findings suggest that LSDV engages all UPR signaling sensors, and that activation of PERK and IRE1 sensors is indispensable to maintaining its own replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.