Hypervirulent and multidrug resistant Klebsiella pneumoniae strains pose a significant threat to the public health. In the present study, 21 carbapenem-resistant K. pneumoniae isolates (CRKP) were determined by the string test as hypermucoviscous K. pneumoniae (HMKP), with the prevalence of 15.0% (21/140) among CRKP, and 1.1% (21/1838) among all K. pneumoniae isolates. Among them, 7 (33.3%), and 1 (4.76%) isolate belonged to capsular serotype K20 and K2 respectively, while 13 (61.9%, 13/21) weren't successfully typed by capsular serotyping. All the 21 isolates were carbapenemase-producers and were positive for blaKPC-2. In addition to blaKPC-2, all the 21 isolates except one harbor blaSHV-11, and 15 carry extended-spectrum β-lactamase gene blaCTX-M-65. The virulence-associated genes with more than 90% of positive rates among 21 isolates included ureA (100%, 21/21), wabG (100%, 21/21), fimH (95.2%, 20/21), entB (95.2%, 20/21), ycf (95.2%, 20/21), ybtS (95.2%, 20/21), and iutA (90.5%, 19/21). rmpA and aerobactin were found in 57.1% (12/21) isolates. Five sequence types (STs) were identified by multilocus sequence typing (MLST), including ST11 (11 K-non capsule typable and 5 K20 isolates), ST268 (1 K20 isolate and 1 K-non capsule typable isolate), ST65 (1 K2 isolate), ST692 (1 K-non capsule typable isolate), and ST595, a novel sequence type (1 K-non capsule typable isolate). Pulsed-field gel electrophoresis (PFGE) results showed two major PFGE clusters, of which cluster A accounts for 6 ST11 isolates (28.6%) and cluster B includes 8 ST11 isolates (38.1%, 8/21). Ten and six ST11 isolates were isolated from 2014 and 2015, respectively, while 8 were isolated from the same month of December in 2014. Ten isolates were collected from the intensive care unit (ICU), and all except one belonged to ST11. Additional 4 ST11 isolates were collected from patients in non-ICU wards, who had more than 10 days of ICU stay history in 2014 prior to transfer to their current wards where the isolates were recovered. Taken together, the present study showed a hospital outbreak and dissemination of ST11 HMKP with carbapenem resistance caused by KPC-2. Effective surveillance and strict infection control strategies should be implemented to prevent outbreak by HMKP with carbapenem resistance in hospitals.
A distinctive syndrome caused by hypermucoviscous Klebsiella pneumoniae (HMKP) including pyogenic liver abscess (PLA) is now becoming a globally emerging disease. In the present study, 22.8% (84/369) of K. pneumoniae clinical isolates associated with various types of invasive infections were identified as HMKP, with 45.2% associated with PLA. Multivariate regression analysis showed that male patients with 41–50 years, PLA, diabetes mellitus, and hypertension were independent risk factors for HMKP infections. K2 (42.9%, 36/84) was the most common capsular serotype among HMKP isolates, followed by K1 (23.8%, 20/84). Seventy-five percentage of K1 HMKP isolates were associated with PLA, while K2 HMKP isolates accounted for more types of invasive infections. The positive rates of iutA, mrkD, aerobactin, iroN, and rmpA among HMKP isolates were significantly higher than those among non-HMKP isolates (p < 0.05). There was a correlation between magA, ybtS, alls, and wcaG and K1 isolates. Interestingly, mrkD was exclusively detected among HMKP (32.1%, 27/84) and K2 isolates (65.9%, 27/41). All K1 and K2 HMKP and non-HMKP isolates were positive for rmpA. Aerobactin was found among 95.0 and 97.5% of K1 and K2 isolates. ST23 was found to be the most prevalent ST among 69 HMKP isolates with K1, K2, K5, K20, and K57 (27.5%, 19/69) and was only found among K1 isolates. ST65 was the second most prevalent ST (26.1%, 18/69) and was also only found among K2 isolates. ST23-K1 HMKP isolates (84.2%, 16/19) were associated with PLA, while ST65-K2 isolates were correlated with more types of infections relative to ST23-K1 isolates. PFGE results showed that the homology of 84 HMKP isolates was diverse. Only five PFGE clusters with more than 75% similarity accounted for more than three isolates. These five PFGE clusters only accounted for 35 (41.7%, 35/84) isolates. In conclusion, our study first found that hypertension and male patients with 41–50 years old were independent risk factors. The composition of ST types and PFGE clusters among K. pneumoniae K2 isolates was more diverse than K1 isolates. K1 and K2 HMKP isolates had respective specific profiles of virulence-associated genes.
The aim of this study was to investigate the genomic epidemiology of MRSA in China to identify predominant lineages and their associated genomic and phenotypic characteristics. In this study, we conducted whole-genome sequencing on 565 MRSA isolates from 7 provinces and municipalities of China between 2014 and 2020. MRSA isolates were subjected to MLST, spa typing, SCC mec typing, analysis of virulence determinants and antimicrobial susceptibility testing. Among 565 MRSA isolates tested, clonal complex (CC) 59 (31.2%), CC5 (23.4%) and CC8 (13.63%) were the major lineages, and the clonal structure was dominated by ST59-t437-IV (14.9%), ST239-t030-III (6.4%) and ST5-t2460-II (6.0%), respectively. Of note, CC8, the predominant lineage in 2014–2015, was replaced by CC59 after 2016. Interestingly, the extension and unstable structure of the CC5 population was observed, with ST5-t311-II, ST764-t1084-II, ST5-t2460-II and ST764-t002-II existing complex competition. Further analysis revealed that virulence determinant profiles and antibiograms were closely associated with the clonal lineage. The CC59 MRSA was less resistant to most tested antimicrobials and carried fewer resistance determinants. But rifampicin resistance and mupirocin resistance were closely linked with CC8 and CC5, respectively. MRSA isolates conservatively carried multiple virulence genes involved in various functions. PVL encoding genes were more common in ST338, CC30, CC398, ST8 and CC22, while tsst -1 was associated with ST5. In conclusion, the community-associated CC59-ST59-t437-IV lineage was predominant in China, with diverse clonal isolates alternately circulating in various geographical locations. Our study highlights the need for MRSA surveillance in China to monitor changes in MRSA epidemiology.
To evaluate the diagnostic performance of Xpert MTB/RIF Ultra for EPTB (Extrapulmonary Tuberculosis) patients on different types of extrapulmonary specimens from different anatomic sites. Methods: Patients with suspected EPTB were prospectively included, extrapulmonary specimens were collected and subjected to culture, Xpert and Xpert Ultra assays in accordance with relevant guidelines. Results: A total of 225 cases were included which contained 200 EPTB cases (43 culture-positive EPTB, 157 culture-negative EPTB which were diagnosed based on pathological results and a satisfied response to anti-TB treatment) and 25 non-EPTB cases. Sensitivities of Xpert Ultra and Xpert for culture-positive cases were 83.7% (95%CI, 68.7-92.7) and 67.4% (95% CI, 51.3-80.5) respectively. Specificities of Xpert Ultra and Xpert were 92.0% (95% CI, 72.5-98.6) and 96.0% (95% CI, 77.7-99.8) respectively. The sensitivities of Xpert Ultra, Xpert and culture for 200 EPTB cases were 52.5% (105/ 200, 95% CI, 45.4-59.6), 34.0% (68/200, 95% CI, 27.6-41.1) and 21.5% (43/200, 95% CI, 16.2-28.0) respectively. By comparison among different types of specimens, Xpert Ultra can detect 78.9% (56/71) of EPTB on fine-needle aspiration (FNA) tissues which was higher than that on pleural fluid (43.7% (45/ 103), p < 0.05. Conclusions: Xpert Ultra assay had a higher sensitivity than those of Xpert and culture on extrapulmonary specimens, which could be a promising approach for rapid EPTB diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.