Parkinson's disease (PD) is a severe neurodegenerative disorder. Although the detailed underlying molecular mechanism remains to be elucidated, the major pathological feature of PD is the loss of dopaminergic (DA) neurons of the substantia nigra. The use of donor stem cells to replace DA neurons may be a key breakthrough in the treatment of PD. In the present study, the growth kinetics of hippocampal neural stem cells (Hip-NSCs) isolated from postnatal mice and cultured in vitro were observed, specifically the generation of cells expressing DA neuronal markers nuclear receptor related-1 protein (Nurr1) and tyrosine hydroxylase (TH). It was revealed that Hip-NSCs differentiated primarily into astrocytes when cultured in serum-containing medium. However, in low serum conditions, the number of βIII tubulin-positive neurons increased markedly. The proportion of Nurr1-positive cells and TH-positive neurons, significantly increased with increasing duration of directed differentiation of Hip-NSCs (P=0.0187 and 0.0254, respectively). The results of the present study reveal that Hip-NSCs may be induced to differentiate in vitro into neurons expressing Nurr1 and TH, known to be critical regulators of DA neuronal fate. Additionally, their expression may be necessary to facilitate neuronal maturation in vitro. These data suggest that Hip-NSCs may serve as a source of DA neurons for cell therapy in patients diagnosed with PD.
Before saturated absorption, graphene possesses optical nonlinear refractive index, which is a photoinduced refractive index effect. Taking advantage of this effect, a wavelength tunable filter is realized based on a graphene filled all optical fiber Fabry‐Pérot microcavity. Experimental results show that the interference wavelength of the filter exhibits linear red‐shift with the increase of the tunning optical power and tunning efficiency increases with the increase of cavity length and filled graphene thickness. In this study, the maximum wavelength vs power tunning efficiency can get 66 pm/mW. This filter has the advantages of high tunning efficiency, simple structure, antienvironmental interference good mechanical performance, and repeatability.
An optical fiber interferometric refractometer for alcohol gas concentration and low refractive index (RI) solution (with 1.33–1.38 RI range) measurement is theoretically and experimentally demonstrated. The refractometer is based on a single-mode thin-core single-mode (STS) interferometric structure. By embedding a suitably sized air cavity at the splicing point, high-order cladding modes are successfully excited, which makes the sensor more suitable for low RI solution measurement. The effect of the air cavity’s diameter on the sensitivity of alcohol gas concentration was analyzed experimentally, which proved that RI sensitivity will increase with an enlarged diameter of the air cavity. On this basis, the air cavity is filled with graphene in order to improve the sensitivity of the sensor; and the measured sensitivity of the alcohol gas concentration is −1206.1 pm/%. Finally, the characteristics of the single-cavity structure, graphene-filled structure and double-cavity structure sensors are demonstrated, and the linear RI sensitivities are −54.593 nm/RIU (refractive index unit), −85.561 nm/RIU and 359.77 nm/RIU, respectively. Moreover, these sensor structures have the advantages of being compact and easily prepared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.