Estimation of the age of human bloodstains is of great importance in forensic practices, but it is a challenging task because of the lack of a well-accepted, reliable, and established method. Here, the attenuated total reflection (ATR)-Fourier transform infrared (FTIR) technique combined with advanced chemometric methods was utilized to determine the age of indoor and outdoor bloodstains up to 107 days. The bloodstain storage conditions mimicked crime scene scenarios as closely as possible. Two partial least squares regression models—indoor and outdoor models with 7–85 days—exhibited good performance for external validation, with low values of predictive root mean squared error (5.83 and 4.77) and high R2 values (0.94 and 0.96) and residual predictive deviation (4.08 and 5.14), respectively. Two partial least squares–discriminant analysis classification models were built and demonstrated excellent distinction between fresh (age ≤1 d) and older (age >1 d) bloodstains, which is highly valuable for forensic investigations. These findings demonstrate that ATR-FTIR spectroscopy coupled with advanced chemometric methods can be employed as a rapid and non-destructive tool for age estimation of bloodstains in real-world forensic investigation.
Estimating PMI is of great importance in forensic investigations. Although many methods are used to estimate the PMI, a few investigations focus on the postmortem redistribution. In this study, ultraviolet–visible (UV–Vis) measurement combined with visual inspection indicated a regular diffusion of hemoglobin into plasma after death showing the redistribution of postmortem components in blood. Thereafter, attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy was used to confirm the variations caused by this phenomenon. First, full-spectrum partial least-squares (PLS) and genetic algorithm combined with PLS (GA-PLS) models were constructed to predict the PMI. The performance of GA-PLS model was better than that of full-spectrum PLS model based on its root mean square error (RMSE) of cross-validation of 3.46 h (R2 = 0.95) and the RMSE of prediction of 3.46 h (R2 = 0.94). The investigation on the similarity of spectra between blood plasma and formed elements also supported the role of redistribution of components in spectral changes in postmortem plasma. These results demonstrated that ATR-FTIR spectroscopy coupled with the advanced mathematical methods could serve as a convenient and reliable tool to study the redistribution of postmortem components and estimate the PMI.
Massively parallel sequencing (MPS) has rapidly become a promising method for forensic DNA typing, due to its ability to detect a large number of markers and samples simultaneously in a single reaction, and sequence information can be obtained directly. In the present study, two kinds of forensic genetic markers, short tandem repeat (STR) and identity-informative single nucleotide polymorphism (iiSNP) were analyzed simultaneously using ForenSeq DNA Signature Prep Kit, a commercially available kit on MPS platform. A total of 152 DNA markers, including 27 autosomal STR (A-STR) loci, 24 Y chromosomal STR (Y-STR) loci, 7 X chromosomal STR (X-STR) loci and 94 iiSNP loci were genotyped for 107 Tibetan individuals (53 males and 54 females). Compared with length-based STR typing methods, 112 more A-STR alleles, 41 more Y-STR alleles, and 24 more X-STR alleles were observed at 17 A-STRs, 9 Y-STRs, and 5 X-STRs using sequence-based approaches. Thirty-nine novel sequence variations were observed at 20 STR loci. When the flanking regions were also analyzed in addition to target SNPs at the 94 iiSNPs, 38 more alleles were identified. Our study provided an adequate genotype and frequencies data of the two types of genetic markers for forensic practice. Moreover, we also proved that this panel is highly polymorphic and informative in Tibetan population, and should be efficient in forensic kinship testing and personal identification cases. Several genetic markers have been introduced to forensic genetics to clarify the problems of kinship analysis and personal identification. Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) are commonly used genetic markers in present forensic cases 1,2. STRs, usually 2-6 bp in length, are commonly typed with the amplified fragment length polymorphism (Amp-FLP) strategy combining fluorescently labelled multiplex PCR and capillary electrophoresis (CE) 3. Allele calling can thus be inferred from fragment length by comparison with a locus specific allelic ladder that has been previously sequenced, where the number of repeat units is distinct 2. Thus, each allele is regarded as a lengthbased (LB) allele using this approach. With the advancement of sequencing technologies over the last decade, the existence of sequence structure variations in alleles with the same length has been uncovered 4. SNPs, which could be amplified with smaller amplicons, are bi-allelic genetic markers with lower mutation rates compared with STRs 5. Several autosomal SNP marker sets and detection methods, such as single-base extension, chip-based microarrays, and allele-specific hybridization arrays, have been developed to compensate for the relatively weaker discrimination power of single loci caused by the bi-allelic nature of the human genome 5-7. However, these methods are not widely used in forensic practice due to the requirement of higher DNA inputs or the limited ability to detect a vast number of SNP loci in a single reaction 8. Different from detection methods mentioned above, massively paralle...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.