Crosslinkable poly (arylene ether nitrile)/hollow glass microsphere (PEN/HGM) composites with relative low dielectric permittivity and high thermal stability were prepared by a solution mixing and thermal compression method. For achieving this purpose, HGM were tight embedded in network, which were formed by crosslinking reaction of PEN end-capped with phthalonitrile. Compared to pure PEN, the dielectric constant of the resulting composite with 15 wt% of HGM reduced from 4.1 to 2.7 at 100 kHz, and the dielectric loss decreased from 2.0 9 10 -2 to 0.8 9 10 -2 at 100 kHz. Furthermore, the as-prepared composites showed significant enhancement in glass transition temperature (increased by 64°C) and onset thermal degradation temperature (increased by 41°C). Therefore, such composites were expected to find their applications area such as integrated circuit where needs low dielectric constant, low dielectric loss and high thermal stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.