Osteogenesis and adipogenesis of bone marrow mesenchymal stem cells (BMSCs) are regarded as being of great importance in the regulation of bone remodeling. In this study, rat BMSCs were exposed to different levels of cyclic mechanical stress generated by liquid drops and cultured in general medium or adipogenic medium. Markers of osteogenic (Runx2 and Collagen I) and adipogenic (C/EBPα, PPARγ, and lipid droplets) differentiation were detected using Western blot and histological staining. The protein levels of members of the phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase 3β (GSK-3β)/β-catenin signaling pathway were also examined. Results showed that small-magnitude stress significantly upregulated Runx2 and Collagen I and downregulated PPARγ and C/EBPα expression in BMSCs cultured in adipogenic medium, while large-magnitude stress reversed the effect when compared with unloading groups. The PI3K/Akt signaling pathway could be strongly activated by mechanical stimulation; however, large-magnitude stress led to decreased activation of the signaling pathway when compared with small-magnitude stress. Activation of β-catenin with LiCl led to increased expression of Runx2 and Collagen I and reduction of C/EBPα and PPARγ expression in BMSCs. Inhibition of PI3K/Akt signaling partially blocked the expression of β-catenin. Taken together, our results indicate that mechanical stress-regulated osteogenesis and adipogenesis of rat BMSCs are mediated, at least in part, by the PI3K/Akt/GSK-3β/β-catenin signaling pathway.
Recent studies have shown that some members of the tripartite motif-containing protein (TRIM) family serve as important regulators of tumorigenesis. However, the biological role of TRIM14 in osteosarcoma remains to be established. In this study, we showed that TRIM14 is upregulated in human osteosarcoma specimens and cell lines, and correlated with osteosarcoma progression and shorter patient survival times. Functional studies demonstrated that overexpression of TRIM14 enhances osteosarcoma cell proliferation, clone formation, cell cycle procession, migration and invasion in vitro and promotes tumor growth in vivo, and conversely, its silencing has the opposite effects. Furthermore, TRIM14 overexpression induced activation of the AKT pathway. Inhibition of AKT expression reversed the TRIM14-mediated promotory effects on cell growth and mobility, in addition to TRIM14-induced epithelial-to-mesenchymal transition (EMT) and cyclin D1 upregulation. Our findings collectively suggest that TRIM14 functions as an oncogene by upregulating the AKT signaling pathway in osteosarcoma cells, supporting its potential utility as a therapeutic target for this disease.
Background/Aims: This study investigated the effect of mechanical stress on tendon-bone healing in a rabbit anterior cruciate ligament (ACL) reconstruction model as well as cell proliferation and matrix formation in co-culture of bone-marrow mesenchymal stem cells (BMSCs) and tendon cells (TCs). Methods: The effect of continuous passive motion (CPM) therapy on tendon-bone healing in a rabbit ACL reconstruction model was evaluated by histological analysis, biomechanical testing and gene expressions at the tendon-bone interface. Furthermore, the effect of mechanical stretch on cell proliferation and matrix synthesis in BMSC/TC co-culture was also examined. Results: Postoperative CPM therapy significantly enhanced tendon-bone healing, as evidenced by increased amount of fibrocartilage, elevated ultimate load to failure levels, and up-regulated gene expressions of Collagen I, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin at the tendon-bone junction. In addition, BMSC/TC co-culture treated with mechanical stretch showed a higher rate of cell proliferation and enhanced expressions of Collagen I, Collagen III, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin than that of controls. Conclusion: These results demonstrated that proliferation and differentiation of local precursor cells could be enhanced by mechanical stimulation, which results in enhanced regenerative potential of BMSCs and TCs in tendon-bone healing.
Background/Aims: This study investigated the effect of silencing TOB1 (Transducer of ERBB2, 1) expression in bone marrow-derived mesenchymal stem cells (MSCs) on MSC-facilitated tendon-bone healing in a rat supraspinatus repair model. Methods: Rat MSCs were transduced with a recombinant lentivirus encoding short hairpin RNA (shRNA) against TOB1. MSC cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The effect of MSCs with TOB1 deficiency on tendon-bone healing in a rat rotator cuff repair model was evaluated by biomechanical testing, histological analysis and collagen type I and II gene expression. An upstream regulator (miR-218) of TOB1 was determined in MSCs. Results: We found that knockdown of TOB1 significantly increased the proliferative activity of rat MSCs in vitro. When MSCs with TOB1 deficiency were injected into injured rat supraspinatus tendon-bone junctions, the effect on tendon-bone healing was enhanced compared to treatment with control MSCs with normal TOB1 expression, as evidenced by elevated levels of ultimate load to failure and stiffness, increased amount of fibrocartilage and augmented expression of collagen type I and type II genes. In addition, we found that the TOB1 3′ untranslated region is a direct target of miR-218. Similar to the effect of TOB1 deficiency, overexpression of miR-218 effectively promoted tendon-bone healing in rat. Conclusion: These results suggest that TOB1 may play a negative role in the effect of MSCs on tendon-bone healing, and imply that expression of TOB1 may be regulated by miR-218.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.