This paper addresses the distributed optimal decoupling synchronous control of multiple autonomous unmanned linear systems (MAUS) subject to complex network dynamic coupling. The leader–follower mechanism based on neighborhood error dynamics is established and the network coupling term is regarded as the external disturbance to realize the decoupling cooperative control of each agent. The Bounded L2-Gain problem for the network coupling term is formulated into a multi-player zero-sum differential game. It is shown that the solution to the multi-player zero-sum differential game requires the solution to coupled Hamilton–Jacobi (HJ) equations. The coupled HJ equations are transformed into an algebraic Riccati equation (ARE), which can be solved to obtain the Nash equilibrium of a multi-player zero-sum game. It is shown that the bounded L2-Gain for coupling attenuation can be realized by applying the zero-sum game solution as the control protocol and the ultimately uniform boundedness (UUB) of a local neighborhood error vector under conservative conditions is proved. A simulation example is provided to show the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.