Rice (Oryza sativa) contains a biosynthetic gene cluster associated with production of at least two groups of diterpenoid phytoalexins, the antifungal phytocassanes and antibacterial oryzalides. While cytochromes P450 (CYP) from this cluster are known to be involved in phytocassane production, such mono-oxygenase activity relevant to oryzalide biosynthesis was unknown. Here we report biochemical characterization demonstrating that CYP71Z6 from this cluster acts as an ent-isokaurene C2-hydroxylase that is presumably involved in the biosynthesis of oryzalides. Our results further suggest that the closely related and co-clustered CYP71Z7 likely acts as a C2-hydroxylase involved in a latter step of phytocassane biosynthesis. Thus, CYP71Z6 & 7 appear to have evolved distinct roles in rice diterpenoid metabolism, offering insight into plant biosynthetic gene cluster evolution.
Accumulated evidence demonstrates that Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, the precise role of PERK in JEV-induced apoptosis and encephalitis remains unknown. Here, we report that JEV infection activates the PERK-ATF4-CHOP apoptosis pathway both in vitro and in vivo. PERK activation also promotes the formation of stress granule, which in turn represses JEV-induced apoptosis. However, PERK inhibitor reduces apoptosis, indicating that JEV-activated PERK predominantly induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway. Among JEV proteins that have been reported to induce ER stress, only JEV NS4B can induce PERK activation. PERK has been reported to form an active molecule by dimerization. The coimmunoprecipitation assay shows that NS4B interacts with PERK. Moreover, glycerol gradient centrifugation shows that NS4B induces PERK dimerization. Both the LIG-FHA and the LIG-WD40 domains within NS4B are required to induce PERK dimerization, suggesting that JEV NS4B pulls two PERK molecules together by simultaneously interacting with them via different motifs. PERK deactivation reduces brain cell damage and encephalitis during JEV infection. Furthermore, expression of JEV NS4B is sufficient to induce encephalitis via PERK in mice, indicating that JEV activates PERK primarily via its NS4B to cause encephalitis. Taken together, our findings provide a novel insight into JEV-caused encephalitis. IMPORTANCE Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, whether the PERK pathway of ER stress response plays important roles in JEV-induced apoptosis and encephalitis remains unknown. Here, we found that JEV infection activates ER stress sensor PERK in neuronal cells and mouse brains. PERK activation induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway upon JEV infection. Among the JEV proteins prM, E, NS1, NS2A, NS2B, and NS4B, only NS4B activates PERK. Moreover, activated PERK participates in apoptosis and encephalitis induced by JEV and NS4B. These findings provide a novel therapeutic approach for JEV-caused encephalitis.
Pyruvate is a glycolytic metabolite used for energy production and macromolecule biosynthesis. However, little is known about its functions in tumorigenesis. Here, we report that exogenous pyruvate inhibits the proliferation of different types of cancer cells. This inhibitory effect of pyruvate on cell growth is primarily attributed to its function as a signal molecule to repress histone gene expression, which leads to less compact chromatin and misregulation of genome-wide gene expression. Pyruvate represses histone gene expression by inducing the expression of NAD+ biosynthesis enzyme, nicotinamide phosphoribosyltransferase (NAMPT) via myocyte enhancer factor 2C (MEF2C), which then increases NAD+ levels and activates the histone deacetylase activity of SIRT1. Chromatin immunoprecipitation analysis indicates that pyruvate enhances SIRT1 binding at histone gene promoters where it reduces histone acetylation. Although pyruvate delays cell entry into S phase, pyruvate represses histone gene expression independent of cell cycle progression. Moreover, we find that administration of pyruvate reduces histone expression and retards tumor growth in xenograft mice without significant side effects. Using tissues from cervical and lung cancer patients, we find intracellular pyruvate concentrations inversely correlate with histone protein levels. Together, we uncover a previously unknown function of pyruvate in regulating histone gene expression and cancer cell proliferation.
Cancer cells reprogram their metabolism to meet their demands for survival and proliferation. The metabolic plasticity of tumor cells help them adjust to changes in the availability and utilization of nutrients in the microenvironment. Recent studies revealed that many metabolites and metabolic enzymes have non-metabolic functions contributing to tumorigenesis. One major function is regulating epigenetic modifications to facilitate appropriate responses to environmental cues. Accumulating evidence showed that epigenetic modifications could in turn alter metabolism in tumors. Although a comprehensive understanding of the reciprocal connection between metabolic and epigenetic rewiring in cancer is lacking, some conceptual advances have been made. Understanding the link between metabolism and epigenetic modifications in cancer cells will shed lights on the development of more effective cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.