‘Freeze-out’ of amplitude growth, i.e. the amplitude growth stagnation of a shocked helium–air interface, is realized through a reflected shock, which produces baroclinic vorticity of the opposite sign to that deposited by the first shock. Theoretically, a model is constructed to calculate the relations among the initial parameters for achieving freeze-out. In particular, if the amplitude growth is within the linear regime at the arrival of the reflected shock, the time interval between the impacts of two shock waves is linearly related to the initial perturbation wavelength, and is independent of the initial perturbation amplitude. Experimentally, an air–SF
$_6$
(or air–argon) plane interface is adopted to produce a weak reflected shock. Seven experimental runs with specific initial conditions are examined. For all cases, freeze-out is achieved after the reflected shock impact under the designed conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.