Although carbon fiber reinforced plastics (CFRP) materials are widely used in high-strength and low-weight applications such as aerospace, defense, and automotive industries, they are one of the difficult-to-machine materials due to extensive tool wear. This paper investigates the impact of carbon fiber types on tool wear in edge-trimming CFRPs, each with particular ply angle of 0°, 45°, 90°, or 135°, using uncoated tungsten carbide endmills at a high spindle speed of 6000 rpm and a constant feed of 0.0508 mm/rev. Three distinct types of carbon fiber tows, including T300 as standard modulus (SM), IM-7 as intermediate modulus (IM), and K13312 as high modulus (HM), have been vacuum infused into CFRP laminates and edge-trimmed to investigate wear characteristics. Three wear criteria measured are flank wear, edge rounding radii, and worn area. The results show that tool wear is influenced by carbon fiber properties, such as fiber tensile strength, tensile modulus, and fiber microstructure. Overall, Intermediate modulus carbon fibers with the highest tensile strength produced the largest tool wear due to brushing effects by abrasive carbon fibers. Out of four fiber directions, the largest tool wear was obtained from the 45° angle while the lowest tool wear occurred in the 0° angle.
Carbon fiber reinforced plastics (CFRP) composites are difficult-to-machine materials due to extensive tool wear. This paper investigates the impact of carbon fiber types on tool wear in edge-trimming CFRPs, each with particular ply angle of 0°, 45°, 90°, or 135°, using uncoated tungsten carbide endmills at the high spindle speed of 6000 rpm and the constant feed of 0.0508 mm/rev. Three distinct types of carbon fiber tows, including T300 as standard modulus (SM), IM-7 as intermediate modulus (IM), and K13312 as high modulus (HM), have been vacuum infused into CFRP laminates and edge-trimmed to investigate wear characteristics. Three wear criteria measured are flank wear, edge rounding radii, and worn area. The results show that tool wear is influenced by carbon fiber properties, such as fiber tensile strength, tensile modulus, and fiber microstructure. Overall, intermediate modulus carbon fibers with the highest tensile strength produced the most extensive tool wear due to brushing effects by abrasive carbon fibers. Out of four fiber directions, the largest tool wear was obtained from the 45° angle, while the lowest tool wear occurred in the 0° angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.