Tea (Camellia sinensis) is the most widely consumed beverage aside from water. The flavor of tea is conferred by certain metabolites, especially l-theanine, in C. sinensis. To determine why more l-theanine accumulates in C. sinensis than in other plants, we compare l-theanine contents between C. sinensis and other plant species (Camellia nitidissima, Camellia japonica, Zea mays, Arabidopsis thaliana, and Solanum lycopersicum) and use a stable isotope labeling approach to elucidate its biosynthetic route. We quantify relevant intermediates and metabolites by mass spectrometry. l-Glutamic acid, a precursor of l-theanine, is present in most plants, while ethylamine, another precursor of l-theanine, specifically accumulates in Camellia species, especially C. sinensis. Most plants contain the enzyme/gene catalyzing the conversion of ethylamine and l-glutamic acid to l-theanine. After supplementation with [H]ethylamine, all the plants produce [H]l-theanine, which suggests that ethylamine availability is the reason for the difference in l-theanine accumulation between C. sinensis and other plants.
A variety of conditions lead to anemia, which affects one-quarter of the world's population. Previous genome-wide association studies revealed a number of genetic polymorphisms significantly associated with plasma iron status. To evaluate the association of genetic variants in genes involved in iron delivery and hepcidin regulation pathways with the risk of iron-deficiency anemia (IDA), the following single nucleotide polymorphisms were genotyped in 2139 unrelated elderly Chinese women: rs3811647 (TF), rs7385804 (TFR2), rs235756 (BMP2), and rs855791(V736A) and rs4820268 (TMPRSS6, encoding matriptase-2). We identified common variants in TMPRSS6 as being genetic risk factors for both iron deficiency (OR(rs855791) = 1.55, P = 4.96 × 10(-8)) and IDA (OR(rs855791) = 1.78, P = 8.43 × 10(-9)). TMPRSS6 polymorphisms were also associated with lower serum iron (SI) and hemoglobin levels, consistent with their associations to increased iron deficiency and anemia risk. Variants rs3811647 in TF and rs7385804 in TFR2 were associated with reduced SI, serum transferrin and transferrin saturation levels; however, these variants were not associated with iron deficiency or anemia risk. Our findings suggest that TF, TFR2 and TMPRSS6 polymorphisms are significantly associated with decreased iron status, but only variants in TMPRSS6 are genetic risk factors for iron deficiency and IDA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.