Summary.A new methodology for constructing convex optimization models called disciplined convex programming is introduced. The methodology enforces a set of conventions upon the models constructed, in turn allowing much of the work required to analyze and solve the models to be automated.
Stochastic programs can effectively describe the decision-making problem in an uncertain environment. Unfortunately, such programs are often computationally demanding to solve. In addition, their solutions can be misleading when there is ambiguity in the choice of a distribution for the random parameters. In this paper, we propose a model describing one's uncertainty in both the distribution's form (discrete, Gaussian, exponential, etc.) and moments (mean and covariance). We demonstrate that for a wide range of cost functions the associated distributionally robust stochastic program can be solved efficiently. Furthermore, by deriving new confidence regions for the mean and covariance of a random vector, we provide probabilistic arguments for using our model in problems that rely heavily on historical data. This is confirmed in a practical example of portfolio selection, where our framework leads to better performing policies on the "true" distribution underlying the daily return of assets.
We describe an SDP relaxation based method for the position estimation problem in wireless sensor networks. The optimization problem is set up so as to minimize the error in sensor positions to fit distance measures. Observable gauges are developed to check the quality of the point estimation of sensors or to detect erroneous sensors. The performance of this technique is highly satisfactory compared to other techniques. Very few anchor nodes are required to accurately estimate the position of all the unknown nodes in a network. Also the estimation errors are minimal even when the anchor nodes are not suitably placed within the network or the distance measurements are noisy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.