An improved Ghost-YOLOv5s detection algorithm is proposed in this paper to solve the problems of high computational load and undesirable recognition rate in the traditional detection methods of pavement diseases. Ghost modules and C3Ghost are introduced into the YOLOv5s network to reduce the FLOPs (floating-point operations) in the feature channel fusion process. Mosaic data augmentation is also added to improve the feature expression performance. A public road disease dataset is reconstructed to verify the performance of the proposed method. The proposed model is trained and deployed to NVIDIA Jetson Nano for the experiment, and the results show that the average accuracy of the proposed model reaches 88.17%, increased by 4.01%, and the model FPS (frames per second) reaches 12.51, increased by 184% compared with the existing YOLOv5s. Case studies show that the proposed method satisfies the practical application requirements of pavement disease detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.