Saccharomyces boulardii (S. boulardii) is a probiotic yeast that is widely used to treat gastrointestinal disorders. The present study is aimed to explore the therapeutic effects of S. boulardii on dextran sulfate sodium- (DSS-) induced murine ulcerative colitis (UC) and illustrate the mechanisms of action. C57BL/6 mice were administered S. boulardii (105 and 107 CFU/ml, p.o.) for 3 weeks and then given DSS [2.5% ( w / v )] for one week. Administration of S. boulardii prevented DSS-induced reduction in body weight, diarrhea, bloody feces, decreased colon length, and loss of histological structure. Moreover, S. boulardii protected the intestinal barrier by increasing the levels of tight junction proteins zona occludens-1 and Occludin and exerted immunomodulatory effects in DSS-induced mice. Furthermore, S. boulardii suppressed the colonic inflammation by reducing the levels of Interleukin-1β, Interleukin-6, and Tumor necrosis factor alpha and restored myeloperoxidase activity in mice exposed to DSS. S. boulardii also mitigated colonic oxidative damage by increasing the levels of antioxidant enzymes (superoxide dismutase, catalase, and heme oxygenase 1) and glutathione and decreasing malondialdehyde accumulation. Further studies identified that S. boulardii suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit by decreasing IκKα/β levels, while promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in DSS-exposed mice. Collectively, S. boulardii possessed an appreciable therapeutic effect against the experimental mice model of UC. The protective mechanism of S. boulardii may involve inhibition of NF-κB-mediated proinflammatory signaling and activation of Nrf2-modulated antioxidant defense in addition to intestinal barrier protective and immunomodulatory effects.
Whether metabolites derived from injured renal tubular epithelial cells (TECs) participate in renal fibrosis is poorly explored. After TEC injury, various metabolites are released and among the most potent is adenosine triphosphate (ATP), which is released via ATP-permeable channels. In these hemichannels, connexin 43 (Cx43) is the most common member. However, its role in renal interstitial fibrosis (RIF) has not been fully examined. We analyzed renal samples from patients with obstructive nephropathy and mice with unilateral ureteral obstruction (UUO). Cx43-KSP mice were generated to deplete Cx43 in TECs. Through transcriptomics, metabolomics, and single-cell sequencing multi-omics analysis, the relationship among tubular Cx43, ATP, and macrophages in renal fibrosis was explored. The expression of Cx43 in TECs was upregulated in both patients and mice with obstructive nephropathy. Knockdown of Cx43 in TECs or using Cx43-specific inhibitors reduced UUO-induced inflammation and fibrosis in mice. Single-cell RNA sequencing showed that ATP specific receptors, including P2rx4 and P2rx7, were distributed mainly on macrophages. We found that P2rx4- or P2rx7-positive macrophages underwent pyroptosis after UUO, and in vitro ATP directly induced pyroptosis by macrophages. The administration of P2 receptor or P2X7 receptor blockers to UUO mice inhibited macrophage pyroptosis and demonstrated a similar degree of renoprotection as Cx43 genetic depletion. Further, we found that GAP 26 (a Cx43 hemichannel inhibitor) and A-839977 (an inhibitor of the pyroptosis receptor) alleviated UUO-induced fibrosis, while BzATP (the agonist of pyroptosis receptor) exacerbated fibrosis. Single-cell sequencing demonstrated that the pyroptotic macrophages upregulated the release of CXCL10, which activated intrarenal fibroblasts. Cx43 mediates the release of ATP from TECs during renal injury, inducing peritubular macrophage pyroptosis, which subsequently leads to the release of CXCL10 and activation of intrarenal fibroblasts and acceleration of renal fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.