Point cloud classification is a key technology for point cloud applications and point cloud feature extraction is a key step towards achieving point cloud classification. Although there are many point cloud feature extraction and classification methods, and the acquisition of colored point cloud data has become easier in recent years, most point cloud processing algorithms do not consider the color information associated with the point cloud or do not make full use of the color information. Therefore, we propose a voxel-based local feature descriptor according to the voxel-based local binary pattern (VLBP) and fuses point cloud RGB information and geometric structure features using a random forest classifier to build a color point cloud classification algorithm. The proposed algorithm voxelizes the point cloud; divides the neighborhood of the center point into cubes (i.e., multiple adjacent sub-voxels); compares the gray information of the voxel center and adjacent sub-voxels; performs voxel global thresholding to convert it into a binary code; and uses a local difference sign–magnitude transform (LDSMT) to decompose the local difference of an entire voxel into two complementary components of sign and magnitude. Then, the VLBP feature of each point is extracted. To obtain more structural information about the point cloud, the proposed method extracts the normal vector of each point and the corresponding fast point feature histogram (FPFH) based on the normal vector. Finally, the geometric mechanism features (normal vector and FPFH) and color features (RGB and VLBP features) of the point cloud are fused, and a random forest classifier is used to classify the color laser point cloud. The experimental results show that the proposed algorithm can achieve effective point cloud classification for point cloud data from different indoor and outdoor scenes, and the proposed VLBP features can improve the accuracy of point cloud classification.
The traditional manual inspection is gradually replaced by the unmanned aerial vehicles (UAV) automatic inspection. However, due to the limited computational resources carried by the UAV, the existing deep learning-based algorithm needs a large amount of computational resources, which makes it impossible to realize the online detection. Moreover, there is no effective online detection system at present. To realize the high-precision online detection of electrical equipment, this paper proposes an SSD (Single Shot Multibox Detector) detection algorithm based on the improved Dual network for the images of insulators and spacers taken by UAVs. The proposed algorithm uses MnasNet and MobileNetv3 to form the Dual network to extract multi-level features, which overcomes the shortcoming of single convolutional network-based backbone for feature extraction. Then the features extracted from the two networks are fused together to obtain the features with high-level semantic information. Finally, the proposed algorithm is tested on the public dataset of the insulator and spacer. The experimental results show that the proposed algorithm can detect insulators and spacers efficiently. Compared with other methods, the proposed algorithm has the advantages of smaller model size and higher accuracy. The object detection accuracy of the proposed method is up to 95.1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.