Glioblastoma is the most common primary brain tumor in adults and still remains incurable, due to the limited accumulation of drugs in the tumor area. Herein, iRGD‐modified nanoparticles, DOX@MSN‐SS‐iRGD&1MT, are developed for simultaneous delivery of chemotherapeutic agents (doxorubicin, DOX) and immune checkpoint inhibitor (1‐methyltryptophan, 1MT) into orthotopic glioma. The nanoparticles are comprised of mesoporous silica nanoparticles loaded with DOX, combined with Asp‐Glu‐Val‐Asp (DEVD) connected 1MT, and finally modified by iRGD. These nanoparticles show the capability of penetrating through blood brain barrier into the tumor area, and significantly improve accumulation of drugs in orthotopic brain tumors with minimal side effects. The nanoparticles also activate cytotoxic CD8+ T lymphocytes and inhibit CD4+ T cells in both GL261 cells cocultured with splenocytes in vitro and GL261‐luc orthotopic tumors in vivo. Moreover, the expression of antitumor cytokines IFNα/β, IFN‐γ, TNF, IL‐17, STING, and GrzB is upregulated while protumor proteins p‐STAT3 and IL‐10 are downregulated in the brain tumor area. This study demonstrates the advantages of chemo‐immunotherapeutic nanoparticles accumulated in the brain tumor area and their effectively inhibiting tumor proliferation, which establishes a delivery platform to promote antitumor immunity against glioblastoma.
Astrocytes are involved in neuroprotection, and DJ-1 is an important antioxidant protein that is abundantly expressed in reactive astrocytes. However, the role of DJ-1 in astrocytes’ neuroprotection in cerebral ischemia/reperfusion injury and its potential mechanism is unclear. Thus, to explore effects and mechanisms of DJ-1 on the neuroprotection of astrocytes, we used primary co-cultures of neurons and astrocytes under oxygen and glucose deprivation/reoxygenation in vitro and transient middle cerebral artery occlusion/reperfusion in vivo to mimic ischemic reperfusion insult. Lentiviral was used to inhibit and upregulate DJ-1 expression in astrocytes, and DJ-1 siRNA blocked DJ-1 expression in rats. Inhibiting DJ-1 expression led to decreases in neuronal viability. DJ-1 knockdown also attenuated total and nuclear Nrf2 and glutathione (GSH) levels in vitro and vivo. Similarly, loss of DJ-1 decreased Nrf2/ARE-binding activity and expression of Nrf2/ARE pathway-driven genes. Overexpression of DJ-1 yielded opposite results. This suggests that the mechanism of action of DJ-1 in astrocyte-mediated neuroprotection may involve regulation of the Nrf2/ARE pathway to increase GSH after cerebral ischemia/reperfusion injury. Thus, DJ-1 may be a new therapeutic target for treating ischemia/reperfusion injury.Key Messages
Astrocytes protect neurons in co-culture after OGD/RDJ-1 is upregulated in astrocytes and plays an important physiological roles in neuronal protection under ischemic conditionsDJ-1 protects neuron by the Nrf2/ARE pathway which upregulates GSH
Autoimmune diseases are usually accompanied by tissue injury caused by autoantigen-specific T-cells. KV1.3 channels participate in modulating calcium signaling to induce T-cell proliferation, immune activation and cytokine production. Effector memory T (TEM)-cells, which play major roles in many autoimmune diseases, are controlled by blocking KV1.3 channels on the membrane. Toxins derived from animal venoms have been found to selectively target a variety of ion channels, including KV1.3. By blocking the KV1.3 channel, these toxins are able to suppress the activation and proliferation of TEM cells and may improve TEM cell-mediated autoimmune diseases, such as multiple sclerosis and type I diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.