The computation for today's intelligent personal assistants such as Apple Siri, Google Now, and Microsoft Cortana, is performed in the cloud. This cloud-only approach requires significant amounts of data to be sent to the cloud over the wireless network and puts significant computational pressure on the datacenter. However, as the computational resources in mobile devices become more powerful and energy efficient, questions arise as to whether this cloud-only processing is desirable moving forward, and what are the implications of pushing some or all of this compute to the mobile devices on the edge. In this paper, we examine the status quo approach of cloud-only processing and investigate computation partitioning strategies that effectively leverage both the cycles in the cloud and on the mobile device to achieve low latency, low energy consumption, and high datacenter throughput for this class of intelligent applications. Our study uses 8 intelligent applications spanning computer vision, speech, and natural language domains, all employing state-of-the-art Deep Neural Networks (DNNs) as the core machine learning technique. We find that given the characteristics of DNN algorithms, a fine-grained, layer-level computation partitioning strategy based on the data and computation variations of each layer within a DNN has significant latency and energy advantages over the status quo approach. Using this insight, we design Neurosurgeon, a lightweight scheduler to automatically partition DNN computation between mobile devices and datacenters at the granularity of neural network layers. Neurosurgeon does not require per-application profiling. It adapts to various DNN architectures, hardware platforms, wireless networks, and server load levels, intelligently partitioning computation for
Industrial dialogue systems such as Apple Siri and Google Assistant require large scale diverse training data to enable their sophisticated conversation capabilities. Crowdsourcing is a scalable and inexpensive data collection method, but collecting high quality data efficiently requires thoughtful orchestration of crowdsourcing jobs. Prior study of data collection process has focused on tasks with limited scope and performed intrinsic data analysis, which may not be indicative of impact on trained model performance. In this paper, we present a study of crowdsourcing methods for a user intent classification task in one of our deployed dialogue systems. Our task requires classification over 47 possible user intents and contains many intent pairs with subtle differences. We consider different crowdsourcing job types and job prompts, quantitatively analyzing the quality of collected data and downstream model performance on a test set of real user queries from production logs. Our observations provide insight into how design decisions impact crowdsourced data quality, with clear recommendations for future data collection for dialogue systems.
The computation for today's intelligent personal assistants such as Apple Siri, Google Now, and Microsoft Cortana, is performed in the cloud. This cloud-only approach requires significant amounts of data to be sent to the cloud over the wireless network and puts significant computational pressure on the datacenter. However, as the computational resources in mobile devices become more powerful and energy efficient, questions arise as to whether this cloud-only processing is desirable moving forward, and what are the implications of pushing some or all of this compute to the mobile devices on the edge. In this paper, we examine the status quo approach of cloud-only processing and investigate computation partitioning strategies that effectively leverage both the cycles in the cloud and on the mobile device to achieve low latency, low energy consumption, and high datacenter throughput for this class of intelligent applications. Our study uses 8 intelligent applications spanning computer vision, speech, and natural language domains, all employing state-of-the-art Deep Neural Networks (DNNs) as the core machine learning technique. We find that given the characteristics of DNN algorithms, a fine-grained, layer-level computation partitioning strategy based on the data and computation variations of each layer within a DNN has significant latency and energy advantages over the status quo approach. Using this insight, we design Neurosurgeon, a lightweight scheduler to automatically partition DNN computation between mobile devices and datacenters at the granularity of neural network layers. Neurosurgeon does not require per-application profiling. It adapts to various DNN architectures, hardware platforms, wireless networks, and server load levels, intelligently partitioning computation for
The computation for today's intelligent personal assistants such as Apple Siri, Google Now, and Microsoft Cortana, is performed in the cloud. This cloud-only approach requires significant amounts of data to be sent to the cloud over the wireless network and puts significant computational pressure on the datacenter. However, as the computational resources in mobile devices become more powerful and energy efficient, questions arise as to whether this cloud-only processing is desirable moving forward, and what are the implications of pushing some or all of this compute to the mobile devices on the edge. In this paper, we examine the status quo approach of cloud-only processing and investigate computation partitioning strategies that effectively leverage both the cycles in the cloud and on the mobile device to achieve low latency, low energy consumption, and high datacenter throughput for this class of intelligent applications. Our study uses 8 intelligent applications spanning computer vision, speech, and natural language domains, all employing state-of-the-art Deep Neural Networks (DNNs) as the core machine learning technique. We find that given the characteristics of DNN algorithms, a fine-grained, layer-level computation partitioning strategy based on the data and computation variations of each layer within a DNN has significant latency and energy advantages over the status quo approach. Using this insight, we design Neurosurgeon, a lightweight scheduler to automatically partition DNN computation between mobile devices and datacenters at the granularity of neural network layers. Neurosurgeon does not require per-application profiling. It adapts to various DNN architectures, hardware platforms, wireless networks, and server load levels, intelligently partitioning computation for
As user demand scales for intelligent personal assistants (IPAs) such as Apple’s Siri, Google’s Google Now, and Microsoft’s Cortana, we are approaching the computational limits of current datacenter (DC) architectures. It is an open question how future server architectures should evolve to enable this emerging class of applications, and the lack of an open-source IPA workload is an obstacle in addressing this question. In this article, we present the design of Sirius, an open end-to-end IPA Web-service application that accepts queries in the form of voice and images, and responds with natural language. We then use this workload to investigate the implications of four points in the design space of future accelerator-based server architectures spanning traditional CPUs, GPUs, manycore throughput co-processors, and FPGAs. To investigate future server designs for Sirius, we decompose Sirius into a suite of eight benchmarks (Sirius Suite) comprising the computationally intensive bottlenecks of Sirius. We port Sirius Suite to a spectrum of accelerator platforms and use the performance and power trade-offs across these platforms to perform a total cost of ownership (TCO) analysis of various server design points. In our study, we find that accelerators are critical for the future scalability of IPA services. Our results show that GPU- and FPGA-accelerated servers improve the query latency on average by 8.5× and 15×, respectively. For a given throughput, GPU- and FPGA-accelerated servers can reduce the TCO of DCs by 2.3× and 1.3×, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.