Recent composite based researches reveal that anticyclonic eddies facilitate the growth of phytoplankton in the subtropical gyres. Two dynamical mechanisms, eddy‐Ekman pumping and winter mixing, have been examined individually, but their relative and combined effects remain unclear. Using satellite observations and model simulations, this study investigated the process of a distinct phytoplankton bloom generated in an anticyclonic eddy in the nutrient‐depleted southeastern Indian Ocean. The bloom propagated westward along with the eddy for more than 600 km from late April to August in 2010. The peak of surface chlorophyll concentration in the eddy is 2.2 times larger than the mean value of the ambient. The development of the bloom is dominated by the winter deepening of mixed layer, whose velocity in vertical nutrient flux is on average 3 times larger than that of eddy‐Ekman pumping. The results of a 1‐D physical‐biogeochemical model demonstrate that the role of eddy‐Ekman pumping is also indispensable, because it not only transports extra nutrients into the mixed layer, but also results in significant chlorophyll enrichment in subsurface water. The superposition of eddy‐Ekman pumping on winter mixing triples the chlorophyll both at the surface and in the upper layer, and the entrainment of subsurface phytoplankton into the mixed layer contributes significantly to the surface bloom, especially in its initial stage. Both the satellite observations and model simulation show that eddy‐Ekman pumping can lead to an early occurrence of the bloom for more than 2 weeks.
Abstract. The size-fractionated phytoplankton growth and microzooplankton grazing are crucial for the temporal change of community size structure, regulating not only trophic transfer but also the carbon cycle of the ocean. However, the size-dependent growth and grazing dynamics on a monthly or an annual basis are less addressed in the coastal ocean. In this paper, the seasonal responses of the size-fractionated phytoplankton growth and grazing to environmental change were examined over 1 year at a coastal site of the northern South China Sea. We found a nanophytoplankton-dominated community with strong seasonal variations in all size classes. Phytoplankton community growth rate was positively correlated to nutrients, with community grazing rate correlating to the total chlorophyll a at the station, reflecting a combined bottom-up and topdown effect on phytoplankton population dynamics. Further analyses suggested that the specific growth rate of microphytoplankton was significantly influenced by phosphate, and that of nanophytoplankton was influenced by light, although picophytoplankton growth was controlled by both nitrate and temperature. In addition, the specific grazing rate of nanophytoplankton was well correlated to phytoplankton standing stock, while that of micro- and pico-compartments was negatively influenced by ciliate abundance and salinity. Finally, a lower grazing impact for micro-cells (38 %) than nano- and pico-cells (72 % and 60 %, respectively) may support size-selective grazing of microzooplankton on small cells at this eutrophic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.