Recently, we have struck the balance between the information freshness, in terms of age of information (AoI), experienced by users and energy consumed by sensors, by appropriately activating sensors to update their current status in caching enabled Internet of Things (IoT) networks [1]. To solve this problem, we cast the corresponding status update procedure as a continuing Markov Decision Process (MDP) (i.e., without termination states), where the number of state-action pairs increases exponentially with respect to the number of considered sensors and users. Moreover, to circumvent the curse of dimensionality, we have established a methodology for designing deep reinforcement learning (DRL) algorithms to maximize (resp. minimize) the average reward (resp. cost), by integrating R-learning, a tabular reinforcement learning (RL) algorithm tailored for maximizing the long-term average reward, and traditional DRL algorithms, initially developed to optimize the discounted long-term cumulative reward rather than the average one. In this technical report, we would present detailed discussions on the technical contributions of this methodology.
In the Internet of Things (IoT) networks, caching is a promising technique to alleviate energy consumption of sensors by responding to users' data requests with the data packets cached in the edge caching node (ECN). However, without an efficient status update strategy, the information obtained by users may be stale, which in return would inevitably deteriorate the accuracy and reliability of derived decisions for real-time applications. In this paper, we focus on striking the balance between the information freshness, in terms of age of information (AoI), experienced by users and energy consumed by sensors, by appropriately activating sensors to update their current status. Particularly, we first depict the evolutions of the AoI with each sensor from different users' perspective with time steps of nonuniform duration, which are determined by both the users' data requests and the ECN's status update decision. Then, we formulate a non-uniform time step based dynamic status update optimization problem to minimize the long-term average cost, jointly considering the average AoI and energy consumption. To this end, a Markov Decision Process is formulated and further, a dueling deep R-network based dynamic status update algorithm is devised by combining dueling deep Q-network and tabular Rlearning, with which challenges from the curse of dimensionality and unknown of the environmental dynamics can be addressed. Finally, extensive simulations are conducted to validate the effectiveness of our proposed algorithm by comparing it with five baseline deep reinforcement learning algorithms and policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.