Path planning is a very important step for mobile smart vehicles in complex environments. Sampling based planners such as the Probabilistic Roadmap Method (PRM) have been widely used for smart vehicle applications. However, there exist some shortcomings, such as low efficiency, low reuse rate of the roadmap, and a lack of guidance in the selection of sampling points. To solve the above problems, we designed a pseudo-random sampling strategy with the main spatial axis as the reference axis. We optimized the generation of sampling points, removed redundant sampling points, set the distance threshold between road points, adopted a two-way incremental method for collision detections, and optimized the number of collision detection calls to improve the construction efficiency of the roadmap. The key road points of the planned path were extracted as discrete control points of the Bessel curve, and the paths were smoothed to make the generated paths more consistent with the driving conditions of vehicles. The correctness of the modified PRM was verified and analyzed using MATLAB and ROS to build a test platform. Compared with the basic PRM algorithm, the modified PRM algorithm has advantages related to speed in constructing the roadmap, path planning, and path length.
Abstract-Existing parallel file systems are unable to differentiate I/Os requests from concurrent applications and meet per-application bandwidth requirements. This limitation prevents applications from meeting their desired Quality of Service (QoS) as high-performance computing (HPC) systems continue to scale up. This paper presents vPFS, a new solution to address this challenge through a bandwidth virtualization layer for parallel file systems. vPFS employs user-level parallel file system proxies to interpose requests between native clients and servers and to schedule parallel I/Os from different applications based on configurable bandwidth management policies. vPFS is designed to be generic enough to support various scheduling algorithms and parallel file systems. Its utility and performance are studied with a prototype which virtualizes PVFS2, a widely used parallel file system. Enhanced proportional sharing schedulers are enabled based on the unique characteristics (parallel striped I/Os) and requirement (high throughput) of parallel storage systems. The enhancements include new threshold-and layout-driven scheduling synchronization schemes which reduce global communication overhead while delivering total-service fairness. An experimental evaluation using typical HPC benchmarks (IOR, NPB BTIO) shows that the throughput overhead of vPFS is small (< 3% for write, < 1% for read). It also shows that vPFS can achieve good proportional bandwidth sharing (> 96% of target sharing ratio) for competing applications with diverse I/O patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.