Blood-brain barrier (BBB) defects and cerebrovascular dysfunction contribute to amyloid-β (Aβ) brain accumulation and drive Alzheimer disease (AD) pathology. By regulating vascular functions and inflammation in the microvasculature, a disintegrin and metalloprotease with thrombospondin type I motif, member 13 (ADAMTS13) plays a significant protective effect in atherosclerosis and stroke. However, whether ADAMTS13 influences AD pathogenesis remains unclear. Using in vivo multiphoton microscopy, histological, behavioral, and biological methods, we determined BBB integrity, cerebrovascular dysfunction, amyloid accumulation, and cognitive impairment in
APPPS1
mice lacking ADAMTS13. We also tested the impact of viral-mediated expression of ADAMTS13 on cerebrovascular function and AD-like pathology in
APPPS1
mice. We show that ADAMTS13 deficiency led to an early and progressive BBB breakdown as well as reductions in vessel density, capillary perfusion, and cerebral blood flow in
APPPS1
mice. We found that deficiency of ADAMTS13 increased brain plaque load and Aβ levels and accelerated cerebral amyloid angiopathy (CAA) by impeding BBB-mediated clearance of brain Aβ, resulting in worse cognitive decline in
APPPS1
mice. Virus-mediated expression of ADAMTS13 attenuated BBB disruption and increased microvessels, capillary perfusion, and cerebral blood flow in
APPPS1
mice already showing BBB damage and plaque deposition. These beneficial vascular effects were reflected by increase in clearance of cerebral Aβ, reductions in Aβ brain accumulation, and improvements in cognitive performance. Our results show that ADAMTS13 deficiency contributes to AD cerebrovascular dysfunction and the resulting pathogenesis and cognitive deficits and suggest that ADAMTS13 may offer novel therapeutic opportunities for AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.