Eyelashes play a crucial part in the human facial structure and largely affect the facial attractiveness in modern cosmetic design. However, the appearance and structure of eyelashes can easily induce severe artifacts in high-fidelity multi-view 3D face reconstruction. Unfortunately it is highly challenging to remove eyelashes from portrait images using both traditional and learning-based matting methods due to the delicate nature of eyelashes and the lack of eyelash matting dataset. To this end, we present EyelashNet, the first eyelash matting dataset which contains 5,400 high-quality eyelash matting data captured from real world and 5,272 virtual eyelash matting data created by rendering avatars. Our work consists of a capture stage and an inference stage to automatically capture and annotate eyelashes instead of tedious manual efforts. The capture is based on a specifically-designed fluorescent labeling system. By coloring the eyelashes with a safe and invisible fluorescent substance, our system takes paired photos with colored and normal eyelashes by turning the equipped ultraviolet (UVA) flash on and off. We further correct the alignment between each pair of photos and use a novel alpha matte inference network to extract the eyelash alpha matte. As there is no prior eyelash dataset, we propose a progressive training strategy that progressively fuses captured eyelash data with virtual eyelash data to learn the latent semantics of real eyelashes. As a result, our method can accurately extract eyelash alpha mattes from fuzzy and self-shadow regions such as pupils, which is almost impossible by manual annotations. To validate the advantage of EyelashNet, we present a baseline method based on deep learning that achieves state-of-the-art eyelash matting performance with RGB portrait images as input. We also demonstrate that our work can largely benefit important real applications including high-fidelity personalized avatar and cosmetic design.
In this paper, we present iOrthoPredictor, a novel system to visually predict teeth alignment in photographs. Our system takes a frontal face image of a patient with visible malpositioned teeth along with a corresponding 3D teeth model as input, and generates a facial image with aligned teeth, simulating a real orthodontic treatment effect. The key enabler of our method is an effective disentanglement of an explicit representation of the teeth geometry from the in-mouth appearance, where the accuracy of teeth geometry transformation is ensured by the 3D teeth model while the in-mouth appearance is modeled as a latent variable. The disentanglement enables us to achieve fine-scale geometry control over the alignment while retaining the original teeth appearance attributes and lighting conditions. The whole pipeline consists of three deep neural networks: a U-Net architecture to explicitly extract the 2D teeth silhouette maps representing the teeth geometry in the input photo, a novel multilayer perceptron (MLP) based network to predict the aligned 3D teeth model, and an encoder-decoder based generative model to synthesize the in-mouth appearance conditional on the original teeth appearance and the aligned teeth geometry. Extensive experimental results and a user study demonstrate that iOrthoPredictor is effective in qualitatively predicting teeth alignment, and applicable to the orthodontic industry.
Facial structure editing of portrait images is challenging given the facial variety, the lack of ground-truth, the necessity of jointly adjusting color and shape, and the requirement of no visual artifacts. In this paper, we investigate how to perform chin editing as a case study of editing facial structures. We present a novel method that can automatically remove the double chin effect in portrait images. Our core idea is to train a fine classification boundary in the latent space of the portrait images. This can be used to edit the chin appearance by manipulating the latent code of the input portrait image while preserving the original portrait features. To achieve such a fine separation boundary, we employ a carefully designed training stage based on latent codes of paired synthetic images with and without a double chin. In the testing stage, our method can automatically handle portrait images with only a refinement to subtle misalignment before and after double chin editing. Our model enables alteration to the neck region of the input portrait image while keeping other regions unchanged, and guarantees the rationality of neck structure and the consistency of facial characteristics. To the best of our knowledge, this presents the first effort towards an effective application for editing double chins. We validate the efficacy and efficiency of our approach through extensive experiments and user studies.
by comparing it to state-of-the-art methods through extensive experiments and user studies. We also demonstrate its applications in hair design and 3D face reconstruction.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.