With increases in the mortality rate and number of patients with prostate cancer (PCa), PCa, particularly the advanced and metastatic disease, has been the focus of a number of studies globally. Over the past seven decades, androgen deprivation therapy has been the primary therapeutic option for patients with advanced PCa; however, the majority of patients developed a poor prognosis stage of castration resistant prostate cancer (CRPC), which eventually led to mortality. Due to CRPC being incurable, laboratory investigations and clinical studies focusing on CRPC have been conducted worldwide. Clarification of the molecular pathways that may lead to CRPC is important for discovering novel therapeutic strategies to delay or reverse the progression of disease. A sustained androgen receptor (AR) signal is still regarded as the main cause of CRPC. Increasing number of studies have proposed different potential mechanisms that cause CRPC, and this has led to the development of novel agents targeting the AR-dependent pathway or AR-independent signaling. In the present review, the major underlying mechanisms causing CRPC, including several major categories of AR-dependent mechanisms, AR bypass signaling, AR-independent mechanisms and other important hypotheses (including the functions of autophagy, PCa stem cell and microRNAs in CRPC progression), are summarized with retrospective pre-clinical or clinical trials to guide future research and therapy.
Prostate cancer poses a public health threat to hundreds of people around the world. p62 has been identified as a tumor suppressor, however, the mechanism by which p62 promotes prostate cancer remains poorly understood. The present study aimed to investigate whether p62 promotes proliferation, apoptosis resistance and invasion of prostate cancer cells via the Kelch-like ECH-associated protein 1/nuclear factor erytheroid-derived 2-like 2/antioxidant response element (Keap1/Nrf2/ARE) axis. Immunohistochemical staining and immunoblotting were performed to determine the protein levels. Rates of proliferation, invasion and apoptosis of prostate cancer cells were assessed using an RTCA system and flow cytometric assays. Levels of reactive oxygen species (ROS) were assessed using Cell ROX Orange reagent and mRNA levels of Nrf2 target genes were detected by qRT-PCR. It was revealed that p62 increased the levels and activities of Nrf2 by suppressing Keap1-mediated proteasomal degradation in prostate cancer cells and tissues, and high levels of p62 promoted growth of prostate cancer through the Keap1/Nrf2/ARE system. Silencing of Nrf2 in DU145 cells overexpressing p62 led to decreases in the rate of cell proliferation and invasion and an increase in the rate of cell apoptosis. p62 activated the Nrf2 pathway, promoted the transcription of Nrf2-mediated target genes and suppressed ROS in prostate cancer. Therefore, p62 promoted the development of prostate cancer by activating the Keap1/Nrf2/ARE pathway and decreasing p62 may provide a new strategy to ameliorate tumor aggressiveness and suppress tumorigenesis to improve clinical outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.