In context-aware recommendation systems, most existing methods encode users’ preferences by mapping item and category information into the same space, which is just a stack of information. The item and category information contained in the interaction behaviours is not fully utilized. Moreover, since users’ preferences for a candidate item are influenced by the changes in temporal and historical behaviours, it is unreasonable to predict correlations between users and candidates by using users’ fixed features. A fine-grained and coarse-grained information based framework proposed in our paper which considers multi-granularity information of users’ historical behaviours. First, a parallel structure is provided to mine users’ preference information under different granularities. Then, self-attention and attention mechanisms are used to capture the dynamic preferences. Experiment results on two publicly available datasets show that our framework outperforms state-of-the-art methods across the calculated evaluation metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.