Chronic kidney diseases result from recurrent or progressive injuries in glomeruli, tubules, interstitium and/or vasculature. In order to study pathogenesis, mechanisms and effects of interventions, many animal models have been developed, including spontaneous, genetic and induced models. However, these models do not exactly simulate human diseases, and most of them are strain, gender or age dependent. We review key information on various rodent models of chronic kidney diseases.
Peroxisome proliferator-activated receptor-␥ (PPAR-␥) agonists not only improve metabolic abnormalities of diabetes and consequent diabetic nephropathy, but they also protect against nondiabetic chronic kidney disease in experimental models. Here, we found that the PPAR-␥ agonist pioglitazone protected against renal injury in aging; it reduced proteinuria, improved GFR, decreased sclerosis, and alleviated cell senescence. Increased local expression of PPAR-␥ paralleled these changes. Underlying mechanisms included increased expression of klotho, decreased systemic and renal oxidative stress, and decreased mitochondrial injury. Pioglitazone also regulated p66Shc phosphorylation, which integrates many signaling pathways that affect mitochondrial function and longevity, by reducing protein kinase C-. These results suggest that PPAR-␥ agonists may benefit aging-related renal injury by improving mitochondrial function.
The present study demonstrates that podocyte-restricted expression of HIV-1 gene products is sufficient for the development of collapsing glomerulosclerosis in the setting of susceptible genetic background.
This study aimed to identify the causative gene for HIV-1 associated nephropathy, a paradigmatic podocytopathy. A previous study demonstrated that transgenic expression of nonstructural HIV-1 genes selectively in podocytes in mice with FVB/N genetic background resulted in podocyte injury and glomerulosclerosis. In this study, transgenic mice that expressed individual HIV-1 genes in podocytes were generated. Five of six transgenic mice that expressed vpr developed podocyte damage and glomerulosclerosis. Analysis of an established vpr transgenic line revealed that transgenic mice on FVB/N but not on C57BL/6 genetic background developed podocyte injury by 8 wk of age, with later glomerulosclerosis. Four of 11 transgenic mice that expressed nef also developed podocyte injury. One transgenic line was established from the nef founder mouse with the mildest phenotype. Transgenic mice in this line developed mesangial expansion at 3 wk of age and mild focal podocyte damage at 10 wk of age. Mating with FVB/N mice did not augment nephropathy. None of the transgenic mice that expressed vif, tat, rev, or vpu in podocytes, even with the FVB/N genetic background, developed podocyte injury. For testing effects of simultaneous expression of vpr and nef, these two lines were mated. All nef:vpr double-transgenic mice showed severe podocyte injury and glomerulosclerosis by 4 wk of age. In contrast, all vpr or nef single-transgenic mice in the same litter uniformly showed no or much milder podocyte injury. These findings indicate that vpr and nef each can induce podocyte injury with a prominent synergistic interaction.
Previously we found thymosin β4 (Tβ4) is up-regulated in glomerulosclerosis and required for angiotensin II-induced expression of plasminogen activator inhibitor-1 (PAI-1) in glomerular endothelial cells. Tβ4 has beneficial effects in dermal and corneal wound healing and heart disease yet its effects in kidney disease are unknown. Here we studied renal fibrosis in wild type and PAI-1 knockout mice following unilateral ureteral obstruction to explore the impact of Tβ4 and its prolyl oligopeptidase tetrapeptide degradation product, Ac-SDKP, in renal fibrosis. Additionally, we explored interactions of Tβ4 with PAI-1. Treatment with Ac-SDKP significantly decreased fibrosis in both wild type and PAI-1 knockout mice, as observed by decreased collagen and fibronectin deposition, fewer myofibroblasts and macrophages, and suppressed pro-fibrotic factors. In contrast, Tβ4 plus a prolyl oligopeptidase inhibitor significantly increased fibrosis in wild type mice. Tβ4 alone also promoted repair and reduced late fibrosis in wild type mice. Importantly, both pro-fibrotic effects of Tβ4 plus the prolyl oligopeptidase inhibitor, and late reparative effects of Tβ4 alone, were absent in PAI-1 knockout mice. Thus, Tβ4 combined with prolyl oligopeptidase inhibition, is consistently pro-fibrotic, but by itself, has anti-fibrotic effects in late stage fibrosis, while Ac-SDKP has consistent anti-fibrotic effects in both early and late stages of kidney injury. These effects of Tβ4 are dependent on PAI-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.