Protein aggregation is of great concern to pharmaceutical formulations and has been implicated in several diseases. We engineered an anti-IL-13 monoclonal antibody CNTO607 for improved solubility. Three structure-based engineering approaches were employed in this study: (i) modifying the isoelectric point (pI), (ii) decreasing the overall surface hydrophobicity and (iii) re-introducing an N-linked carbohydrate moiety within a complementarity-determining region (CDR) sequence. A mutant was identified with a modified pI that had a 2-fold improvement in solubility while retaining the binding affinity to IL-13. Several mutants with decreased overall surface hydrophobicity also showed moderately improved solubility while maintaining a similar antigen affinity. Structural studies combined with mutagenesis data identified an aggregation 'hot spot' in heavy-chain CDR3 (H-CDR3) that contains three residues ((99)FHW(100a)). The same residues, however, were found to be essential for high affinity binding to IL-13. On the basis of the spatial proximity and germline sequence, we reintroduced the consensus N-glycosylation site in H-CDR2 which was found in the original antibody, anticipating that the carbohydrate moiety would shield the aggregation 'hot spot' in H-CDR3 while not interfering with antigen binding. Peptide mapping and mass spectrometric analysis revealed that the N-glycosylation site was generally occupied. This variant showed greatly improved solubility and bound to IL-13 with affinity similar to CNTO607 without the N-linked carbohydrate. All three engineering approaches led to improved solubility and adding an N-linked carbohydrate to the CDR was the most effective route for enhancing the solubility of CNTO607.
The apoprotein is an important intermediate on the folding pathways of many haem proteins, yet a detailed structure of such an intermediate has remained elusive. Here we present the structure of apocytochrome b562 obtained by NMR spectroscopy. The apoprotein has a topology similar to the holoprotein. Nevertheless, significant differences in helix-helix packing between the two are evident. Much of the haem binding pocket in the apoprotein is preserved but exposed to solvent creating a large cavern. As apocytochrome b562 displays many of the physical characteristics ascribed to the molten globule state, these results help ellucidate the origin of several properties of the protein molten globule.
Some antibodies have a tendency to self-associate leading to precipitation at relatively low concentrations. CNTO607, a monoclonal antibody, precipitates irreversibly in phosphate-buffered saline at concentrations above 13 mg/ml. Previous mutagenesis work based on the Fab crystal structure pinpointed a three residue fragment in the heavy chain CDR-3, (99)FHW(100a), as an aggregation epitope that is anchored by two salt bridges. Biophysical characterization of variants reveals that F99 and W100a, but not H100, contribute to the intermolecular interaction. A K210T/K215T mutant designed to disrupt the charge interactions in the aggregation model yielded an antibody that does not precipitate but forms reversible aggregates. An isotype change from IgG1 to IgG4 prevents the antibody from precipitating at low concentration yet the solution viscosity is elevated. To further understand the nature of the antibody self-association, studies on the Fab fragment found high solubility but significant self- and cross-interactions remain. Dynamic light scattering data provides evidence for higher order Fab structure at increased concentrations. Our results provide direct support for the aggregation model that CNTO607 precipitation results primarily from the specific interaction of the Fab arms of neighboring antibodies followed by the development of an extensive network of antibodies inducing large-scale aggregation and precipitation.
The cross-interaction chromatography methods described can be used to screen large panels of recombinant antibodies in order to discover those with low solubility. Addition of this tool to the array of tools available for characterization of affinity and activity of antibody therapeutic candidates will improve selection of candidates with biophysical properties favorable to development of high concentration antibody formulations.
The structure and stability of apocytochrome b562 were explored using absorption and circular dichroism spectroscopic methods. The polypeptide chain retains a well-defined structure when the prosthetic heme group is removed from cytochrome b562. Circular dichroism measurements estimate 60% helicity for apocytochrome b562, compared with 80% helicity found in holocytochrome b562. At low pH, apocytochrome b562 displays a midpoint pH of 2.9, while ferricytochrome b562 displays a midpoint pH of 2.3. The unfolding of the apoprotein by urea and heat can be well approximated by the two-state transition model. The stability of apocytochrome b562 is significantly reduced from that of the holoprotein. The free energy of stabilization (delta G degrees) and the midpoint transition temperature (Tm) for apocytochrome b562 are found to be 3.2 +/- 0.5 kcal/mol and 52.3 +/- 0.9 degrees C, respectively, compared with 6.6 +/- 0.5 kcal/mol and 67.2 +/- 0.5 degrees C for ferricytochrome b562. The smaller heat capacity change upon unfolding of apocytochrome b562 than that of ferricytochrome b562, estimated from the thermodynamic parameters, indicates that apocytochrome b562 possesses a smaller hydrophobic core than holocytochrome b562. Size-exclusion chromatography studies indicate that the apoprotein is slightly more extended in molecular dimension than ferricytochrome b562. The data suggest that apocytochrome b562 resembles a "molten globule" or a "collapsed form" of the holoprotein, in which secondary structure formation is largely complete while the global folding is either only partially complete or dynamically expanded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.