The Guangzhou New TV Tower (GNTVT), currently being constructed in Guangzhou, China, is a supertall structure with a height of 610 m. This tube-in-tube structure comprises a reinforced concrete inner tube and a steel outer tube adopting concrete-filled-tube columns. A sophisticated structural health monitoring (SHM) system consisting of over 600 sensors has been designed and is being implemented by The Hong Kong Polytechnic University to GNTVT for both in-construction and in-service real-time monitoring. This paper outlines the technology innovation in developing and implementing this SHM system, which includes (i) modular design of the SHM system, (ii) integration of the in-construction monitoring system and the in-service monitoring system, (iii) wireless-based data acquisition and Internetbased remote data transmission, (iv) design and implementation of a fiber Bragg grating sensing system, (v) structural health and condition assessment using static and dynamic monitoring data, (vi) verification of the effectiveness of vibration control devices by the SHM system, and (vii) development of an SHM benchmark problem by taking GNTVT as a test bed and using real-world measurement data. Preliminary monitoring data including those obtained during the Wenchuan earthquake and recent typhoons are also presented.
Changing environmental conditions, especially temperature, have been observed to be a complicated factor affecting vibration properties, such as frequencies, mode shapes, and damping, of civil structures. This paper reviews technical literature concerning variations in vibration properties of civil structures under changing temperature conditions. Most of these studies focus on variations in frequencies of bridge structures, with some studies on variations in mode shapes and damping and other types of structures. Statistical approaches to correlation between temperature and frequencies are also reviewed. A quantitative analysis shows that variations in material modulus under different temperatures are the major cause of the variations in vibration properties. A comparative study on different structures made of different materials is carried out in laboratory. Two real structures, the 1377 m main span Tsing Ma Suspension Bridge and the 610 m tall Guangzhou New Television Tower, are examined. Both laboratory experiments and field testing, regardless of different construction materials used and structural types, verify the quantitative analysis. Variations in frequencies of reinforced concrete (RC) structures are much more significant than those of steel structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.