The objective of this study was to explore the effects of intermittent hydrostatic pressure (IHP) on the chondrogenic differentiation of cartilage progenitor cells (CPCs) cultivated in alginate beads. CPCs were isolated from the knee joint cartilage of rabbits, and infrapatellar fat pad-derived stem cells (FPSCs) and chondrocytes (CCs) were included as the control cell types. Cells embedded in alginate beads were treated with IHP at 5 Mpa and 0.5 Hz for 4 h/day for 1, 2, or 4 weeks. The cells' migratory and proliferative capacities were evaluated using the scratch and Live/Dead assays, respectively. Hematoxylin and eosin staining, safranin O staining, and immunohistochemical staining were performed to determine the effects of IHP on the synthesis of extracellular matrix (ECM) proteins. Real-time polymerase chain reaction analysis was performed to measure the expression of genes related to chondrogenesis. The scratch and Live/Dead assays revealed that IHP significantly promoted the migration and proliferation of FPSCs and CPCs to different extents. The staining experiments showed greater production of cartilage ECM components (glycosaminoglycans and collagen II) by cells exposed to IHP, and the gene expression analysis demonstrated that IHP stimulated the expression of chondrocyte-related genes. Importantly, these effects of IHP were more prominent in CPCs than in FPSCs and CCs. Considering all of our experimental results combined, we conclude that CPCs demonstrated a stronger chondrogenic differentiation capacity than the FPSCs and CCs under stimulation with IHP. Thus, the use of CPCs, combined with mechanical stimulation, may represent a valuable strategy for cartilage tissue engineering.
Identifying the primary site in patients with metastatic carcinoma of unknown primary origin can enable more specific therapeutic regimens and may prolong survival. Twenty-three putative tissue-specific markers for lung, colon, pancreatic, breast, prostate, and ovarian carcinomas were nominated by querying a gene expression profile database and by performing a literature search. Ten of these marker candidates were then selected based on validation by reverse transcriptase-polymerase chain reaction (RT-PCR) on 205 formalin-fixed, paraffin-embedded metastatic carcinoma specimens originating from these six and from other cancer types. Next, we optimized the RNA isolation and quantitative RT-PCR methods for these 10 markers and applied the quantitative RT-PCR assay to a set of 260 metastatic tumors. We then built a gene-based algorithm that predicted the tissue of origin of metastatic carcinomas with an overall leaveone-out cross-validation accuracy of 78%. Lastly, our assay demonstrated an accuracy of 76% when tested on an independent set of 48 metastatic samples, 37 of which were either a known primary or initially presented as carcinoma of unknown primary but were subsequently resolved.
This study aimed to determine the effect of fibronectin (FN) on cartilage regeneration through the activation of chondrogenic progenitor cells (CPCs). Cells were isolated from the knee cartilage of mice and cultured in the presence of various concentrations of FN. Proliferation, migration, and chondrogenic differentiation assays were performed in vitro. In some experiments, CPCs were preincubated with anti-integrin α5β1 antibody for 60 min before FN treatment to block the integrin α5β1 receptor. Soluble FN was mixed with Pluronic F-127 and injected into the joint cavity in an early-stage osteoarthritis model. Cartilage repair was evaluated histologically, biochemically, and biomechanically. In vitro, we observed that the isolated CPCs, which exhibited stem cell-relevant markers, proliferated most at a concentration of 20 μg/mL FN (p < 0.05). In addition, FN enhanced the proliferation, migration, and chondrogenic differentiation capacity of CPCs, and the enhancement was significantly decreased by blockade of the integrin α5β1 receptor (p < 0.05). In vivo, FN also significantly promoted cartilage repair along with increased CPC activation and integrin α5β1 expression (p < 0.05). These findings suggest that FN enhances CPC proliferation, migration, and chondrogenic differentiation through the integrin α5β1-dependent signaling pathway. Based on these results, a novel and promising therapy focused on targeted activation of CPCs by FN could be developed for the treatment of cartilage injuries in a clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.