Traditional antitumor drugs inhibit the proliferation and metastasis of tumour cells by restraining the replication and expression of DNA. These drugs are usually highly cytotoxic. They kill tumour cells while also cause damage to normal cells at the same time, especially the hematopoietic cells that divide vigorously. Patients are exposed to other serious situations such as a severe infection caused by a decrease in the number of white blood cells. Energy metabolism is an essential process for the survival of all cells, but differs greatly between normal cells and tumour cells in metabolic pathways and metabolic intermediates. Whether this difference could be used as new therapeutic target while reducing damage to normal tissues is the topic of this paper. In this paper, we introduce five major metabolic intermediates in detail, including acetyl-CoA, SAM, FAD, NAD
+
and THF. Their contents and functions in tumour cells and normal cells are significantly different. And the possible regulatory mechanisms that lead to these differences are proposed carefully. It is hoped that the key enzymes in these regulatory pathways could be used as new targets for tumour therapy.
Significance
Expansion of 55-200 CGG repeats in the 5′ untranslated region of
FMR1
predisposes carriers to fragile X–associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative disorder. FXTAS demonstrates incomplete penetrance, which strongly suggests the presence of genetic modifiers. We performed whole-genome sequencing (WGS) on male premutation carriers (CGG
55–200
) followed by a functional screen in
Drosophila
and identified
PSMB5
as a strong suppressor of CGG-associated neurodegeneration, thereby presenting a therapeutic strategy for FXTAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.