Dimethyl itaconate (DI) is a membrane‐permeable itaconate derivative with anti‐inflammatory functions. However, the anti‐inflammatory effect of DI has never been studied in fungal keratitis. In this study, we tested the protective effect of DI against fungal keratitis and assessed the role of NF‐E2‐related factor‐2 (Nrf2)/heme oxygenase‐1 (HO‐1) signaling in this process. Eyes of C57BL/6 (B6) mice were treated with 2 mm DI after infection with Aspergillus fumigatus. Human corneal epithelial cells (HCECs) were pretreated with 0.25 mm DI and then incubated with A. fumigatus. Clinical scoring, slit‐lamp photography, myeloperoxidase determination, flow cytometry and immunostaining were used to assess the disease response and treatment efficacy. PCR, Western blot and ELISA were used to assess the expression of interleukin‐1β (IL‐1β), chemokine (C–X–C motif) ligand 1, IL‐6, IL‐8, Nrf2 and HO‐1. In addition, quantification of viable fungi, absorbance assays and fluorimetry were used to measure DI fungistatic activity. We observed that DI‐treated eyes showed decreased clinical scores, fungal loads, polymorphonuclear neutrophil (PMN) infiltration and cytokine expression, compared with phosphate‐buffered saline‐treated infected eyes. DI treatment decreased the cytokine levels in infected corneas and in HCECs stimulated with A. fumigatus. Moreover, DI treatment increased Nrf2 and HO‐1 expression in corneas and nuclear Nrf2 accumulation in HCECs. DI‐induced cytokine downregulation was inhibited by pretreatment with an Nrf2 or HO‐1 inhibitor. Finally, DI treatment reduced the A. fumigatus absorbance and fungal mass. These data indicate that DI protects against fungal keratitis by limiting inflammation via the Nrf2/HO‐1 signaling pathway and that DI inhibits the growth of A. fumigatus.
Perillaldehyde ameliorates aspergillus fumigatus keratitis by activating the Nrf2/HO-1 signaling pathway and inhibiting Dectin-1-mediated inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.