The impact of missing data on quantitative research can be serious, leading to biased estimates of parameters, loss of information, decreased statistical power, increased standard errors, and weakened generalizability of findings. In this paper, we discussed and demonstrated three principled missing data methods: multiple imputation, full information maximum likelihood, and expectation-maximization algorithm, applied to a real-world data set. Results were contrasted with those obtained from the complete data set and from the listwise deletion method. The relative merits of each method are noted, along with common features they share. The paper concludes with an emphasis on the importance of statistical assumptions, and recommendations for researchers. Quality of research will be enhanced if (a) researchers explicitly acknowledge missing data problems and the conditions under which they occurred, (b) principled methods are employed to handle missing data, and (c) the appropriate treatment of missing data is incorporated into review standards of manuscripts submitted for publication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.