Microwave is a form of electromagnetic radiation that has high penetration and heating efficiency in food processing. Uneven heating is the main problem of microwave processing, especially in solid foods. Fluid and semifluid media, which are good carriers in microwave processing, have uniform dielectric properties and good material fluidity. Herein, we review the development, application prospects, and limitations of microwave in fluid and semifluid food processing and the research progress in microwave heating with steam as carrier. The mixture of generated steam and tiny micro droplets from food material under the action of microwave can absorb microwave and transfer heat evenly, which effectively improves the uniformity of microwave heating. Due to the relatively uniform dielectric properties and consistent texture of fluid and semifluid food materials, uneven heating phenomenon during their microwave processing can be significantly inhibited. Based on the development of microwave heating technology and equipment design, the microbial inactivation and enzyme inhibition in fluid and semifluid food were improved and food product with better retention of nutrients and sensory profile were produced. Also, microwave radiation can be used to prepare the printing material or process the printed product for 3D food printing, which enhances the added value of 3D printed products and the personalization of food manufacturing. In future research, intelligent control technology can be applied in the microwave processing of fluid and semifluid food materials for various applications. Therefore, the processing conditions can be adjusted automatically.
Background Monitoring and providing early warning are essential operations in the anaerobic digestion (AD) process. However, there are still several challenges for identifying the early warning indicators and their thresholds. One particular challenge is that proposed strategies are only valid under certain conditions. Another is the feasibility and universality of the detailed threshold values obtained from different AD systems. In this article, we report a novel strategy for identifying early warning indicators and defining threshold values via a combined experimental and simulation approach. Results The AD of corn stalk (CS) was conducted using mesophilic, completely stirred anaerobic reactors. Two overload modes (organic and hydraulic) and overload types (sudden and gradual) were applied in order to identify early warning indicators of the process and determine their threshold values. To verify the selection of experimental indicators, a combined experimental and simulation approach was adopted, using a modified anaerobic bioconversion mathematical model (BioModel). Results revealed that the model simulations agreed well with the experimental data. Furthermore, the ratio of intermediate alkalinity to bicarbonate alkalinity (IA/BA) and volatile fatty acids (VFAs) were selected as the most potent early warning indicators, with warning times of 7 days and 5–8 days, respectively. In addition, IA, BA, and VFA/BA were identified as potential auxiliary indicators for diagnosing imbalances in the AD system. The relative variations for indicators based on that of steady state were observed instead of the absolute threshold values, which make the early warning more feasible and universal. Conclusion The strategy of a combined approach presented that the model is promising tool for selecting and monitoring early warning indicators in various corn stalk AD scenarios. This study may offer insight into industrial application of early warning in AD system with mathematical model. Electronic supplementary material The online version of this article (10.1186/s13068-019-1442-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.