Paddy soils make up the largest anthropogenic wetlands on earth, and are characterized by a prominent potential for organic carbon (C) sequestration. By quantifying the plant‐ and microbial‐derived C in soils across four climate zones, we identified that organic C accrual is achieved via contrasting pathways in paddy and upland soils. Paddies are 39%–127% more efficient in soil organic C (SOC) sequestration than their adjacent upland counterparts, with greater differences in warmer than cooler climates. Upland soils are more replenished by microbial‐derived C, whereas paddy soils are enriched with a greater proportion of plant‐derived C, because of the retarded microbial decomposition under anaerobic conditions induced by the flooding of paddies. Under both land‐use types, the maximal contribution of plant residues to SOC is at intermediate mean annual temperature (15–20°C), neutral soil (pH~7.3), and low clay/sand ratio. By contrast, high temperature (~24°C), low soil pH (~5), and large clay/sand ratio are favorable for strengthening the contribution of microbial necromass. The greater contribution of microbial necromass to SOC in waterlogged paddies in warmer climates is likely due to the fast anabolism from bacteria, whereas fungi are unlikely to be involved as they are aerobic. In the scenario of land‐use conversion from paddy to upland, a total of 504 Tg C may be lost as CO2 from paddy soils (0–15 cm) solely in eastern China, with 90% released from the less protected plant‐derived C. Hence, preserving paddy systems and other anthropogenic wetlands and increasing their C storage through sustainable management are critical for maintaining global soil C stock and mitigating climate change.
Does the soil microbial biomass (SMB) in terrestrial ecosystems present well‐ constrained atomic carbon:nitrogen:phosphorus (C:N:P) ratios, analogous to the planktonic biomass in marine ecosystems? How do soil microbes respond to changes in the soil environment in terms of their elemental stoichiometry? Following up on the work of Cleveland and Liptzin (2007), we examined the stoichiometry of C, N and P in the soil and SMB and their relationships at both the landscape and land‐use levels in subtropical terrestrial ecosystems. 1,069 soil samples were collected at a depth of 0–20 cm from three typical landscapes (a karst mountain, a low hill and a lowland) in southern subtropical China. The landscapes presented various land‐use types (e.g., paddy field, upland, woodland, etc.) and intensities of anthropogenic activity. The samples were analyzed to determine soil organic C, total soil N and total soil P contents as well as SMB C, SMB N and SMB P. On average, atomic C:N:P ratios of 80:7.9:1 in the soil and 70.2:6:1 in the SMB were obtained for the region. A clear descending trend of the soil C:N:P ratios (not the SMB C:N:P ratios) was observed across the three landscapes in the order: karst mountain > low hill > lowland. Although significant variations primarily related to human activities were observed in the soil and SMB atomic C:N:P ratios across the landscapes and land‐use types, a significant correlation (r = 0.56,p< 0.001) was found between the soil and SMB C:P ratios in the entire data set; however, the correlation for the comparable N:P ratios was not evident. Significant correlations between the soil and SMB C:N, C:P and even N:P ratios (mainly in the woodland) were also observed variably at the finer level of the landscape or land‐use. The tendency for a C:N:P stoichiometric relationship to exist between microbes and the soil environment found in this study might suggest possible non‐homeostasis of elemental stoichiometry in the SMB of the terrestrial ecosystems in southern subtropical China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.