Unmanned aerial vehicles (UAV) has been increasingly applied to crop growth monitoring due to their advantages, such as their rapid and repetitive capture ability, high resolution, and low cost. LAI is an important parameter for evaluating crop canopy structure and growth without damage. Accurate monitoring of cotton LAI has guiding significance for nutritional diagnosis and the accurate fertilization of cotton. This study aimed to obtain hyperspectral images of the cotton canopy using a UAV carrying a hyperspectral sensor and to extract effective information to achieve cotton LAI monitoring. In this study, cotton field experiments with different nitrogen application levels and canopy spectral images of cotton at different growth stages were obtained using a UAV carrying hyperspectral sensors. Hyperspectral reflectance can directly reflect the characteristics of vegetation, and vegetation indices (VIs) can quantitatively describe the growth status of plants through the difference between vegetation in different band ranges and soil backgrounds. In this study, canopy spectral reflectance was extracted in order to reduce noise interference, separate overlapping samples, and highlight spectral features to perform spectral transformation; characteristic band screening was carried out; and VIs were constructed using a correlation coefficient matrix. Combined with canopy spectral reflectance and VIs, multiple stepwise regression (MSR) and extreme learning machine (ELM) were used to construct an LAI monitoring model of cotton during the whole growth period. The results show that, after spectral noise reduction, the bands screened by the successive projections algorithm (SPA) are too concentrated, while the sensitive bands screened by the shuffled frog leaping algorithm (SFLA) are evenly distributed. Secondly, the calculation of VIs after spectral noise reduction can improve the correlation between vegetation indices and LAI. The DVI (540,525) correlation was the largest after standard normal variable transformation (SNV) pretreatment, with a correlation coefficient of −0.7591. Thirdly, cotton LAI monitoring can be realized only based on spectral reflectance or VIs, and the ELM model constructed by calculating vegetation indices after SNV transformation had the best effect, with verification set R2 = 0.7408, RMSE = 1.5231, and rRMSE = 24.33%, Lastly, the ELM model based on SNV-SFLA-SNV-VIs had the best performance, with validation set R2 = 0.9066, RMSE = 0.9590, and rRMSE = 15.72%. The study results show that the UAV equipped with a hyperspectral sensor has broad prospects in the detection of crop growth index, and it can provide a theoretical basis for precise cotton field management and variable fertilization.
Yield monitoring is an important parameter to evaluate cotton productivity during cotton harvest. Nondestructive and accurate yield monitoring is of great significance to cotton production. Unmanned aerial vehicle (UAV) remote sensing has fast and repetitive acquisition ability. The visible vegetation indices has the advantages of low cost, small amount of calculation and high resolution. The combination of the UAV and visible vegetation indices has been more and more applied to crop yield monitoring. However, there are some shortcomings in estimating cotton yield based on visible vegetation indices only as the similarity between cotton and mulch film makes it difficult to differentiate them and yields may be saturated based on vegetation index estimates near harvest. Texture feature is another important remote sensing information that can provide geometric information of ground objects and enlarge the spatial information identification based on original image brightness. In this study, RGB images of cotton canopy were acquired by UAV carrying RGB sensors before cotton harvest. The visible vegetation indices and texture features were extracted from RGB images for cotton yield monitoring. Feature parameters were selected in different methods after extracting the information. Linear and nonlinear methods were used to build cotton yield monitoring models based on visible vegetation indices, texture features and their combinations. The results show that (1) vegetation indices and texture features extracted from the ultra-high-resolution RGB images obtained by UAVs were significantly correlated with the cotton yield; (2) The best model was that combined with vegetation indices and texture characteristics RF_ELM model, verification set R2 was 0.9109, and RMSE was 0.91277 t.ha−1. rRMSE was 29.34%. In conclusion, the research results prove that UAV carrying RGB sensor has a certain potential in cotton yield monitoring, which can provide theoretical basis and technical support for field cotton production evaluation.
Crop nitrogen is an efficient index for estimating crop yield. Using hyperspectral information to monitor nitrogen in cotton information in real time can help guide cotton cultivation. In this study, we used drip-irrigation cotton in Xinjiang as the research object and employed various nitrogen treatments to explore the correlation between hyperspectral vegetation indexes and leaf nitrogen concentration (LNC) and the canopy nitrogen density (CND) of cotton in different growth periods and interannual. We employed 30 published hyperspectral vegetation indexes obtained through spectral monitoring in 2019 and 2020 to screen for hyperspectral vegetation indexes highly correlated with the nitrogen in cotton indexes. Based on the same group of hyperspectral vegetation indexes, interannual and multi-temporal nitrogen estimation models of cotton were established using three modeling methods: simple multiple linear regression (MLR), partial least-squares regression (PLSR), and support vector regression (SVR). The results showed the following: (1) The correlations between LNC and CND and vegetation index in individual growth periods of cotton were lower than those for the entire growth period. The correlations between hyperspectral vegetation indexes and cotton LNC, CND, leaf area index (LAI), and aboveground biomass (AGB), were significantly different between years and varieties. The relatively stable indexes between vegetation and LNC were TCARI, PRI, CCRI, and SRI-2, and the absolute values of correlation were 0.251~0.387, 0.239~0.422, 0.245~0.387, and 0.357~0.533. In addition, the correlation between CIred-edge and REIlinear and group indicators (CND, AGB, and LAI) was more stable. (2) In the models established by MLR, PLSR, and SVR, the R2 value from the SVR method was higher in the estimation model based on the entire growth period data and LNC and CND. (3) Using the same group of selected hyperspectral vegetation indexes to estimate nitrogen in cotton in different growth stages, the accuracy of the estimation model of canopy nitrogen density (CND) was higher than that of the estimation model for leaf nitrogen concentration. The canopy nitrogen density most stable model was established by MLR at the flowering and boll stages and the full-boll stage with R2 = 0.532~0.665. This study explored the application potential of hyperspectral vegetation indexes to the nitrogen of drip-irrigated cotton, and the results provide a theoretical basis for hyperspectral monitoring for crop nutrients and canopy structure.
Cotton is the main economic crop in China and is important owing to its use as an industrial raw material and a cash crop. This experiment was conducted in the main cotton-producing area of Xinjiang, China. A hyperspectrometer was used to monitor the canopy spectral reflectance of cotton at different stages of growth. The results showed that the leaf area index (LAI) increased with the increase in the amount of nitrogen fertilizer added during the early full boll stage and decreased with the increase in nitrogen fertilization in the full and late boll stages. Insufficient or excessive fertilization led to a decrease in the LAI. The visible light band indicated that the canopy spectral reflectance decreased, and the amount of fertilizer increased in all the growth stages. The near-infrared band revealed that the canopy spectral reflectance increased with the amount of nitrogen applied during the bud stage, early boll stage, and the most vigorous period of boll growth. During the flowering period, the spectral reflectance followed the order N3 > N4 > N2 > N1 > N0. During the entire growth period of cotton, the values of the cotton LAI predicted using the ratio vegetation index (RVI) model were found to best fit the measured values. The LAI monitoring models of cotton in each growth stage were different. The TVI model is the best in the bud and early boll stages. The NDVI model is the best in the flowering stage, and the DVI model is the best in the full boll stage. This study provides a basis to accurately monitor the LAI in each growth period of cotton.
Nitrogen is one of the most important nutrients affecting the growth and fruit quality of walnut trees. Rapid and accurate monitoring of nitrogen concentration in the walnut canopy can provide a digital basis for its nutritional diagnosis and precision fertilization. Consequently, the main purpose of this study was to use Unmanned Aerial Vehicle (UAV) remote sensing technology to monitor the nitrogen concentration of walnut canopies. In this study, UAV multispectral images of the canopies of nine walnut orchards with different management levels in Wensu County, South Xinjiang, China, were collected during the fast-growing (20 May), sclerotization (25 June), and near-maturity (27 August) periods of walnut fruit, and canopy nitrogen concentration data for 180 individual plants were collected during the same periods. The validity of the information extracted via the outline canopy and simulated canopy methods was compared. The accuracy of nitrogen concentration inversion for three modeling methods, partial least squares regression (PLSR), support vector machine (SVM), and random forest (RF), was analyzed; the effects of different combinations of variables on model accuracy were compared; and the spatial distribution of the nitrogen concentration in the walnut canopy was numerically mapped using the optimal model. The results showed that the accuracy of the model created using the single plant information extracted from the outlined canopy was better than that of the simulated canopy method, but the simulated canopy method was more efficient in extracting effective information from the single plant canopy than the outlined canopy. The simulated canopy method overcame the difficulty of mismatching the spectral information of individual plants extracted, by outlining the canopy in the original image for nitrogen distribution mapping with the spectral information of image elements in the original resolution image. The prediction accuracy of the RF model was better than that of the SVM and PLSR models; the prediction accuracy of the model using a combination of waveband texture information and vegetation index texture information was better than that of the single-source model. The coefficients of determination (R2) values of the RF prediction model built using the band texture information extracted via the simulated canopy method with the vegetation index texture information were in the range of 0.61–0.84, the root mean square error (RMSE) values were in the range of 0.27–0.43 g kg−1, and the relative analysis error (RPD) values were in the range of 1.58–2.20. This study shows that it is feasible to monitor the nitrogen concentration of walnut tree canopies using UAV multispectral remote sensing. This study provides a theoretical basis and methodological reference for the rapid monitoring of nutrients in fruit trees in southern Xinjiang.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.