The thyroid hormone (TH)-controlled recruitment process of brown adipose tissue (BAT) is not fully understood. Here, we show that long-term treatment of T3, the active form of TH, increases the recruitment of thermogenic capacity in interscapular BAT of male mice through hyperplasia by promoting the TH receptor α-mediated adipocyte progenitor cell proliferation. Our single-cell analysis reveals the heterogeneous nature and hierarchical trajectory within adipocyte progenitor cells of interscapular BAT. Further analyses suggest that T3 facilitates cell state transition from a more stem-like state towards a more committed adipogenic state and promotes cell cycle progression towards a mitotic state in adipocyte progenitor cells, through mechanisms involving the action of Myc on glycolysis. Our findings elucidate the mechanisms underlying the TH action in adipocyte progenitors residing in BAT and provide a framework for better understanding of the TH effects on hyperplastic growth and adaptive thermogenesis in BAT depot at a single-cell level.
Thyroid hormone (TH) has a profound effect on energy metabolism and systemic homeostasis. Adipose tissues are crucial for maintaining whole-body homeostasis, however, whether TH regulates systemic metabolic homeostasis through its action on the adipose tissues is unclear. Here, we demonstrate that systemic administration of triiodothyronine (T3), the active form of TH, affects both inguinal white adipose tissue (iWAT) and whole-body metabolism. Taking advantage of the mouse model lacking adipocyte TH receptor α (TRα) or β (TRβ) we show that TRβ is the major TR isoform that mediates the T3 action on the expression of genes involved in multiple metabolic pathways in iWAT, including glucose uptake and usage, de novo fatty acid synthesis, and both UCP1-dependent and -independent thermogenesis. Moreover, our results indicate that ChREBP in iWAT is regulated by T3, thereby being critically involved in T3-regulated glucose and lipid metabolism and energy dissipation. Meanwhile, mice with adipocyte TRβ deficiency are susceptible to diet-induced obesity and metabolic dysregulation, suggesting that TRβ in adipocytes may sever as a potential target for metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.