The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz), spontaneous fluctuations of the blood oxygen level dependent (BOLD) signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many studies have shown that these fluctuations are highly coherent within anatomically or functionally linked areas of the brain. However, the underlying topological mechanisms responsible for these coherent intrinsic or spontaneous fluctuations are still poorly understood. Here, we apply modern network analysis techniques to investigate how spontaneous neuronal activities in the human brain derived from the resting-state BOLD signals are topologically organized at both the temporal and spatial scales. We first show that the spontaneous brain functional networks have an intrinsically cohesive modular structure in which the connections between regions are much denser within modules than between them. These identified modules are found to be closely associated with several well known functionally interconnected subsystems such as the somatosensory/motor, auditory, attention, visual, subcortical, and the “default” system. Specifically, we demonstrate that the module-specific topological features can not be captured by means of computing the corresponding global network parameters, suggesting a unique organization within each module. Finally, we identify several pivotal network connectors and paths (predominantly associated with the association and limbic/paralimbic cortex regions) that are vital for the global coordination of information flow over the whole network, and we find that their lesions (deletions) critically affect the stability and robustness of the brain functional system. Together, our results demonstrate the highly organized modular architecture and associated topological properties in the temporal and spatial brain functional networks of the human brain that underlie spontaneous neuronal dynamics, which provides important implications for our understanding of how intrinsically coherent spontaneous brain activity has evolved into an optimal neuronal architecture to support global computation and information integration in the absence of specific stimuli or behaviors.
BackgroundRecent functional MRI (fMRI) studies have demonstrated that there is an intrinsically organized default mode network (DMN) in the resting brain, primarily made up of the posterior cingulate cortex (PCC) and the medial prefrontal cortex (MPFC). Several previous studies have found that the DMN is minimally disturbed during different resting-state conditions with limited cognitive demand. However, this conclusion was drawn from the visual inspection of the functional connectivity patterns within the DMN and no statistical comparison was performed.Methodology/Principal FindingsFour resting-state fMRI sessions were acquired: 1) eyes-closed (EC) (used to generate the DMN mask); 2) EC; 3) eyes-open with no fixation (EO); and 4) eyes-open with a fixation (EO-F). The 2–4 sessions were counterbalanced across participants (n = 20, 10 males). We examined the statistical differences in both functional connectivity and regional amplitude of low frequency fluctuation (ALFF) within the DMN among the 2–4 resting-state conditions (i.e., EC, EO, and EO-F). Although the connectivity patterns of the DMN were visually similar across these three different conditions, we observed significantly higher functional connectivity and ALFF in both the EO and the EO-F conditions as compared to the EC condition. In addition, the first and second resting EC conditions showed significant differences within the DMN, suggesting an order effect on the DMN activity.Conclusions/SignificanceOur findings of the higher DMN connectivity and regional spontaneous activities in the resting state with the eyes open suggest that the participants might have more non-specific or non-goal-directed visual information gathering and evaluation, and mind wandering or daydreaming during the resting state with the eyes open as compared to that with the eyes closed, thus providing insights into the understanding of unconstrained mental activity within the DMN. Our results also suggest that it should be cautious when choosing the type of a resting condition and designating the order of the resting condition in multiple scanning sessions in experimental design.
Recently, magnetic resonance imaging (MRI) has been widely used to investigate the structures and functions of the human brain in health and disease in vivo. However, there are growing concerns about the test-retest reliability of structural and functional measurements derived from MRI data. Here, we present a test-retest dataset of multi-modal MRI including structural MRI (S-MRI), diffusion MRI (D-MRI) and resting-state functional MRI (R-fMRI). Fifty-seven healthy young adults (age range: 19–30 years) were recruited and completed two multi-modal MRI scan sessions at an interval of approximately 6 weeks. Each scan session included R-fMRI, S-MRI and D-MRI data. Additionally, there were two separated R-fMRI scans at the beginning and at the end of the first session (approximately 20 min apart). This multi-modal MRI dataset not only provides excellent opportunities to investigate the short- and long-term test-retest reliability of the brain’s structural and functional measurements at the regional, connectional and network levels, but also allows probing the test-retest reliability of structural-functional couplings in the human brain.
In recent years, with the improvement of synthetic aperture radar (SAR) imaging resolution, it is urgent to develop methods with higher accuracy and faster speed for ship detection in high-resolution SAR images. Among all kinds of methods, deep-learning-based algorithms bring promising performance due to end-to-end detection and automated feature extraction. However, several challenges still exist: (1) standard deep learning detectors based on anchors have certain unsolved problems, such as tuning of anchor-related parameters, scale-variation and high computational costs. (2) SAR data is huge but the labeled data is relatively small, which may lead to overfitting in training. (3) To improve detection speed, deep learning detectors generally detect targets based on low-resolution features, which may cause missed detections for small targets. In order to address the above problems, an anchor-free convolutional network with dense attention feature aggregation is proposed in this paper. Firstly, we use a lightweight feature extractor to extract multiscale ship features. The inverted residual blocks with depth-wise separable convolution reduce the network parameters and improve the detection speed. Secondly, a novel feature aggregation scheme called dense attention feature aggregation (DAFA) is proposed to obtain a high-resolution feature map with multiscale information. By combining the multiscale features through dense connections and iterative fusions, DAFA improves the generalization performance of the network. In addition, an attention block, namely spatial and channel squeeze and excitation (SCSE) block is embedded in the upsampling process of DAFA to enhance the salient features of the target and suppress the background clutters. Third, an anchor-free detector, which is a center-point-based ship predictor (CSP), is adopted in this paper. CSP regresses the ship centers and ship sizes simultaneously on the high-resolution feature map to implement anchor-free and nonmaximum suppression (NMS)-free ship detection. The experiments on the AirSARShip-1.0 dataset demonstrate the effectiveness of our method. The results show that the proposed method outperforms several mainstream detection algorithms in both accuracy and speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.