ScopeExcessive iron contributes to oxidative damage and cognitive decline in Alzheimer's disease. Sesamol, a compound in sesame oil that exhibits both anti‐inflammatory and neuroprotective properties, is examined in this study for its ability to alleviate cognitive impairments in iron overload mice model.Methods and resultsAn iron overload model is established by intraperitoneally injecting dextran iron (250 mg kg−1 body weight) twice a week for 6 weeks, while sesamol (100 mg kg−1 body weight) is administered daily for the same length of time. The results demonstrate that sesamol protects spatial working memory and learning ability in iron overload mice, and inhibits neuronal loss and brain atrophy induced by iron overload. Moreover, sesamol significantly decreases interleukin‐6 and malondialdehyde, and increases glutathione peroxidase 4 in the brains of iron overload mice. Additionally, sesamol maintains iron homeostasis in the brain by regulating the expressions of transferrin receptors, divalent metal transporter 1, and hepcidin, and reducing iron accumulation. Furthermore, sesamol suppresses disturbed systemic iron homeostasis and inflammation, particularly liver interleukin‐6 expression.ConclusionThese findings suggest that sesamol may be effective in mitigating neuroinflammatory responses and cognitive impairments induced by iron overload, potentially through its involvement in mediating the liver‐brain axis.
A large amount of nuclear waste produced in the process of nuclear energy utilization has always been a key problem to be solved urgently for nuclear safety. At present, “deep geological disposal” is a feasible method and is generally accepted by many countries. It is a “multi-barrier system” composed of an artificial barrier, including the solidified waste body, outer packaging material, buffer backfill material, and a natural barrier including the surrounding rock. During deep geological disposal, a near-field environment, where the corrosion of a container could happen, is formed with continuous groundwater infiltration and the release of much heat energy in the process of nuclear waste decay and fission. At the same time, the environment will become a long-term reduction place because of the gradual consumption of the initially retained oxygen. The hydrogen evolution reaction is dominant, so unpredictable hydrogen embrittlement of the container materials could happen due to hydrogen absorption and penetration. This study summarizes the possibility of hydrogen embrittlement of carbon steel, titanium, and their alloys from three aspects, namely, hydrogen solubility, diffusion coefficient, and hydrogen embrittlement, which provides a theoretical basis for predicting the container life in a large time scale.
Deep geological disposal is the most reliable method for high-level nuclear waste, of which metal container as the first barrier for deep geological disposal of high-level nuclear waste is particularly important. Carbon steel is used as a container material because of the low possibility of local corrosion in bentonite. However, after the storage is closed, the decrease of oxygen content will create a near-field environment where the hydrogen embrittlement (HE) in the corrosion process of the container could happen. To evaluate the safety of containers in deep geological disposal of Beshai, the preselected area in China, hydrogen permeation efficiency and HE were estimated in highly pressed saturated bentonite by electrochemical and extrapolation analyses. It is concluded that hydrogen permeation efficiency increases with the disposal year, which proves that the hydrogen evolution reaction dominates the cathode process in the corrosion during long-term disposal. However, slow strain rate tensile shows that Q235 steel has a low HE sensitivity.
After a nuclear waste container buried 500–1,000 m underground, it gradually experiences the dual effects of groundwater infiltration and the decay heat of radioactive nuclear waste. The decay and heat release of nuclear waste will also result in temperature stress. At the same time, the groundwater will gradually saturate the buffer/backfill materials which will produce expansion stress, thus forming a typical thermal–water–stress multi-coupling environment in the geological disposal, forming the environment where the corrosion could happen. In comparison, the information obtained through laboratories, field tests, and natural simulations are limited. However, numerical simulation is very important to predict the changes of a near-field environment. On one hand, the numerical simulation can verify the corresponding experimental data in the early stages; on the other hand, it can also predict the long-term corrosion environment change. This article mainly summarizes the large-scale evolution of a typical corrosion environment obtained by numerical simulation under different deep geological conditions in various countries, focusing on the effects of temperature, saturation, oxygen content, and radiation, which provide a reference for the research on the evolution of important corrosion environments on the surface of a nuclear waste container.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.