Bone cancer pain remains a major challenge in patients with primary or metastatic bone cancer due to a lack of understanding the mechanisms. Previous studies have revealed the two distinct functional polarization states of microglia (classically activated M1 and alternatively activated M2) in the spinal cord in nerve injury–induced neuropathic pain. However, whether microglia in the spinal cord polarize to M1 and M2 phenotypes and contribute to the development of bone cancer pain remains unclear. In this study, we used a mouse model with bone cancer to characterize the M1/M2 polarization of microglia in the spinal cord during the development of bone cancer pain, and investigated the antinociceptive effects of dehydrocorydaline, an alkaloidal component isolated from Rhizoma corydalis on bone cancer pain. Our results show that microglia in the spinal cord presented increased M1 polarization and decreased M2 polarization, while overproduction of IL-1β and inhibited expression of IL-10 was detected during bone cancer pain development. Intraperitoneal administration of dehydrocorydaline (10 mg/kg) had significant antinociceptive effects on day 14 after osteosarcoma cell implantation, accompanied by suppressed M1 phenotype and upregulated M2 phenotype of microglia in the spinal cord, while alleviated inflammatory response was observed then. These results suggest that the imbalanced polarization of microglia toward the M1 phenotype in the spinal cord may contribute to the development of bone cancer pain, while dehydrocorydaline helps to attenuate bone cancer pain, with microglial polarization shifting toward the M2 phenotype in the spinal cord.
The high comorbidity rates of posttraumatic stress disorder and chronic pain have been widely reported, but the underlying mechanisms remain unclear. Emerging evidence suggested that an excess of inflammatory immune activities in the hippocampus involved in the progression of both posttraumatic stress disorder and chronic pain. Considering that microglia are substrates underlying the initiation and propagation of the neuroimmune response, we hypothesized that stress-induced activation of hippocampal microglia may contribute to the pathogenesis of posttraumatic stress disorder-pain comorbidity. We showed that rats exposed to single prolonged stress, an established posttraumatic stress disorder model, exhibited persistent mechanical allodynia and anxiety-like behavior, which were accompanied by increased activation of microglia and secretion of pro-inflammatory cytokines in the hippocampus. Correlation analyses showed that hippocampal activation of microglia was significantly correlated with mechanical allodynia and anxiety-like behavior. Our data also showed that both intraperitoneal and intra-hippocampal injection of minocycline suppressed single prolonged stress-induced microglia activation and inflammatory cytokines accumulation in the hippocampus, and attenuated both single prolonged stress-induced mechanical allodynia and anxiety-like behavior. Taken together, the present study suggests that stress-induced microglia activation in the hippocampus may serve as a critical mechanistic link in the comorbid relationship between posttraumatic stress disorder and chronic pain. The novel concept introduces the possibility of cotreating chronic pain and posttraumatic stress disorder.
Activated glia participate in the pathogenesis of RTX-induced neuropathic pain and are likely to be the source of proinflammatory cytokines. Inhibition of glia contributes to an analgesic effect. These findings provide a novel strategy for the treatment of postherpetic neuralgia.
Background: Post-operative pain management for patients undergoing thoracoscopy surgery is challenging for clinicians which increase both health and economic burden. The non-selective NMDA receptor antagonist esketamine possesses an analgesic effect twice that of ketamine. The application of esketamine might be beneficial in alleviating acute and chronic pain after thoracic surgery. The current study describes the protocol aiming to evaluate the analgesic effect of esketamine after pulmonary surgery via visual analog scale (VAS) score for acute and chronic pain.Methods: A multi-center, prospective, randomized, controlled, double-blind study is designed to explore the analgesic effect of esketamine in randomized patients undergoing video-assisted thoracoscopic surgery (VATS) with general anesthesia. Patients will be randomly assigned to Esketamine Group (Group K) and Control Group (Group C) in a ratio of 1:1. Group K patients will receive esketamine with a bolus of 0.1 mg/kg after anesthesia induction, 0.1 mg/kg/h throughout the operation and 0.015 mg/kg/h in PCIA after surgery while Group C patients will receive the same volume of normal saline. The primary outcome is to measure the pain intensity through the VAS score at 3 months after the operation. The secondary outcome includes VAS score at 1, 4, 8, 24, and 48 h and on the 7th day and 1 month after the operation, complications, ketamine-related neurological side effects, recovery time of bowel function, and total amount of supplemental analgesics.Discussion: The results of the current study might illustrate the analgesic effect of esketamine for patients undergoing thoracoscopy pulmonary surgery and provide evidence and insight for perioperative pain management.Study Registration: The trial was registered with Chinese Clinical Trial Registry (CHICTR) on Nov 18th, 2020 (ChiCTR2000040012).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.