Diabetic osteoporosis continues to surge worldwide, increasing the risk of fracture. We have previously demonstrated that haploinsufficiency of endogenous parathyroid hormone-related peptide (PTHrP) impairs fracture healing. However, whether an exogenous supply of PTHrP can repair bone damage and accelerate fracture healing remains unclear. This study aimed to assess the efficacy and safety of PTHrP in healing fractures. Standardized mid-diaphyseal femur fractures were generated in 12-week-old wild-type and leptin receptor null Lepr(-/-) mice. After administration of PTHrP for 2 weeks, callus tissue properties were analyzed by radiography, micro-computed tomography, histology, histochemistry, immunohistochemistry, and molecular biology techniques. At 2 weeks post-fracture, cartilaginous callus areas were reduced, while total callus and bony callus areas were increased in PTHrP-treated Lepr(-/-) animals and control wild-type mice, compared with vehicle-treated Lepr(-/-) mice. The following parameters were enhanced both in Lepr(-/-) mice after treatment with PTHrP and vehicle-treated wild-type animals, compared with vehicle-treated Lepr(-/-) mice: osteoblast numbers; tissue alkaline phosphatase (ALP) and Type I collagen immunopositive areas; mRNA levels of ALP, Type I collagen, osteoprotegerin, and receptor activator for nuclear factor-κ B ligand; protein levels of Runt-related transcription factor 2 and insulin-like growth factor-1; and the number and surface of osteoclasts. In conclusion, exogenous PTHrP by subcutaneous injection promotes fracture repair in Lepr(-/-) mice by increasing callus formation and accelerating cell transformation: upregulated osteoblastic gene and protein expression, increased endochondral bone formation, osteoblastic bone formation, and osteoclastic bone resorption. However, complete repair was not obtained in PTHrP-treated Lepr(-/-) mice as in control wild-type animals.
Diosmin has been widely used to treat patients with vascular pain for its potent anti-inflammatory and analgesic effects. To evaluate the therapeutic effects of Diosmin in the treatment of radicular pain, we conducted an investigator-initiated, randomized, active-controlled noninferiority trial between January 1, 2009, and December 1, 2010. Diosmin (50 mg/kg/day) was orally administered to treat the radicular pain in 150 patients for one month. Another 150 patients with the same symptom were given 20% 250 ml mannitol (1 g/kg/day) for 7 days and dexamethasone (10 mg/day) for 3 days intravenously guttae. Short-term relief and long-term relief were measured. Secondary outcomes include improvement in functional and psychological status, return to work, and reduction in anti-inflammatory analgesic drugs intake. Patients treated with oral Diosmin achieved reduction in radicular pain. The total satisfaction rate of Diosmin group was 84.7% [95% confidence interval (CI): 77.9%, 90.0%], and the complete satisfaction rate was 50.7% (95% CI: 42.4%, 58.9%). No statistically significant difference was found between the Diosmin group and the active-control group regarding patient satisfaction. No adverse effects were found during the study period. Our study suggests that clinical application of Diosmin with a dose of 50 mg/kg/day might reduce the radicular pain. This trial is registered with ISRCTN97157037.
Background With the continuous development of machine vision and imaging technology and its application in computer-aided diagnosis, it is clinically important to use computer technology to assist physicians in accurate cataract surgery. The capsulorhexis directly affects the outcome of cataract surgery, therefore, we design a method to automatically determine the virtual boundary of capsulorhexis for cataract surgery planning and tracking in-vivo to help surgeons achieve a more ideal capsulotomy geometry. Methods In this study, an effective method was proposed to detect and display the location of capsulorhexis in cataract videos in-vivo . The initial step was locating the entire eye area by analyzing the connected components of the mirror reflective points in the image in the cataract surgery video. Then, an operator was designed for ridge edge variation and used to extract pupil edge features. Lastly, circular Hough transform was used to detect the pupillary margin and calculate the boundary between the scleral limbus and the virtual capsulorhexis border in accordance with the pupillary margin and finally displayed it in-vivo during cataract surgery. Results The method was tested on eight videos of cataract surgery and the results showed that 98.52% accuracy was achieved in the localization of the specular reflection point. We compared the proposed operator with the Sobel, Scharr, Laplace and Canny operators and the results showed that our operator achieved the smallest mean square error with the greatest structural similarity. Conclusions The analysis demonstrated that the proposed operator outperformed other operators in detection and achieved satisfactory results in the videos of actual cataract surgeries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.