The gas-phase reaction between MoO3-x and H(2)S in a reducing atmosphere at elevated temperatures (800 degrees to 950 degrees C) has been used to synthesize large quantities of an almost pure nested inorganic fullerene (IF) phase of MoS(2). A uniform IF phase with a relatively narrow size distribution was obtained. The synthesis of IFs appears to require, in addition to careful control over the growth conditions, a specific turbulent flow regime. The x-ray spectra of the different samples show that, as the average size of the IF decreases, the van der Waals gap along the c axis increases, largely because of the strain involved in folding of the lamella. Large quantities of quite uniform nanotubes were obtained under modified preparation conditions.
We report the observation of single nanotube fragmentation, under tensile stresses, using nanotube-containing thin polymeric films. Similar fragmentation tests with single fibers instead of nanotubes are routinely performed to study the fiber-matrix stress transfer ability in fiber composite materials, and thus the efficiency and quality of composite interfaces. The multiwall nanotube-matrix stress transfer efficiency is estimated to be at least one order of magnitude larger than in conventional fiber-based composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.