In this work we explore deep generative models of text in which the latent representation of a document is itself drawn from a discrete language model distribution. We formulate a variational auto-encoder for inference in this model and apply it to the task of compressing sentences. In this application the generative model first draws a latent summary sentence from a background language model, and then subsequently draws the observed sentence conditioned on this latent summary. In our empirical evaluation we show that generative formulations of both abstractive and extractive compression yield state-of-the-art results when trained on a large amount of supervised data. Further, we explore semi-supervised compression scenarios where we show that it is possible to achieve performance competitive with previously proposed supervised models while training on a fraction of the supervised data.
Deep learning approaches for Visual-Inertial Odometry (VIO) have proven successful, but they rarely focus on incorporating robust fusion strategies for dealing with imperfect input sensory data. We propose a novel end-to-end selective sensor fusion framework for monocular VIO, which fuses monocular images and inertial measurements in order to estimate the trajectory whilst improving robustness to real-life issues, such as missing and corrupted data or bad sensor synchronization. In particular, we propose two fusion modalities based on different masking strategies: deterministic soft fusion and stochastic hard fusion, and we compare with previously proposed direct fusion baselines. During testing, the network is able to selectively process the features of the available sensor modalities and produce a trajectory at scale. We present a thorough investigation on the performances on three public autonomous driving, Micro Aerial Vehicle (MAV) and hand-held VIO datasets. The results demonstrate the effectiveness of the fusion strategies, which offer better performances compared to direct fusion, particularly in presence of corrupted data. In addition, we study the interpretability of the fusion networks by visualising the masking layers in different scenarios and with varying data corruption, revealing interesting correlations between the fusion networks and imperfect sensory input data.
With the rapid growth of social tagging systems, many efforts have been put on tag-aware personalized recommendation. However, due to uncontrolled vocabularies, social tags are usually redundant, sparse, and ambiguous. In this paper, we propose a deep neural network approach to solve this problem by mapping both the tag-based user and item profiles to an abstract deep feature space, where the deepsemantic similarities between users and their target items (resp., irrelevant items) are maximized (resp., minimized). Due to huge numbers of online items, the training of this model is usually computationally expensive in the real-world context. Therefore, we introduce negative sampling, which significantly increases the model's training efficiency (109.6 times quicker) and ensures the scalability in practice. Experimental results show that our model can significantly outperform the state-of-the-art baselines in tag-aware personalized recommendation: e.g., its mean reciprocal rank is between 5.7 and 16.5 times better than the baselines.
Topic models have been prevailing for many years on discovering latent semantics while modeling long documents. However, for short texts they generally suffer from data sparsity because of extremely limited word cooccurrences; thus tend to yield repetitive or trivial topics with low quality. In this paper, to address this issue, we propose a novel neural topic model in the framework of autoencoding with a new topic distribution quantization approach generating peakier distributions that are more appropriate for modeling short texts. Besides the encoding, to tackle this issue in terms of decoding, we further propose a novel negative sampling decoder learning from negative samples to avoid yielding repetitive topics. We observe that our model can highly improve short text topic modeling performance. Through extensive experiments on real-world datasets, we demonstrate our model can outperform both strong traditional and neural baselines under extreme data sparsity scenes, producing high-quality topics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.