In clinical studies, the treatment effect may be heterogeneous among patients. It is of interest to identify subpopulations which benefit most from the treatment, regardless of the treatment’s overall performance. In this study, we are interested in subgroup identification in longitudinal studies when nonlinear trajectory patterns are present. Under such a situation, evaluation of the treatment effect entails comparing longitudinal trajectories while subgroup identification requires a further evaluation of differential treatment effects among subgroups induced by moderators. To this end, we propose a tree-structured subgroup identification method, termed “interaction tree for longitudinal trajectories”, which combines mixed effects models with regression splines to model the nonlinear progression patterns among repeated measures. Extensive simulation studies are conducted to evaluate its performance and an application to an alcohol addiction pharmacogenetic trial is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.