This study was to provide a theoretical basis for effective treatment of myocardial ischemia-reperfusion injury (I/R injury) and explore the effect of cerium oxide (CeO2) nanoparticles on myocardial cell apoptosis induced by I/R injury. In this study, 50 healthy male Sprague Dawley (SD) rats were selected and divided into five groups according to the random table method: a sham operation group, an I/R group, a 1 -10 nm CeO2 nanoparticle group (CeO2-1 group), a 10 -25 nm CeO2 nanoparticle group (CeO2-2 group), and a 50 nm CeO2 nanoparticle group (CeO2-3 group). Rats in different groups were injected with phosphate buffer solution (PBS) and CeO2 nanoparticles with different diameters, respectively. The rat models of I/R injury were prepared to explore and analyze the superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, glutathione peroxidase (GSH-Px) activity, and myocardial cell apoptosis of rats with I/R injury by CeO2 nanoparticles. The results showed that the cardiomyocyte necrosis, SOD activity, MDA content, GSH-Px activity, and apoptosis index of the three groups of rats injected with CeO2 nanoparticles were much better than those in the I/R group. The effects on SOD activity, MDA content, GSH-Px activity, and apoptosis index of cardiomyocytes in the CeO2-2 group were significantly better than those in the CeO2-1 and CeO2-3 groups, showing statistically great differences (P< 0.05); and effects on SOD activity, MDA content, and GSH-Px activity of cardiomyocytes in CeO2-1 group were better obviously than those in the CeO2-3 groups, showing statistically observable differences (P< 0.05). In addition, the difference between the CeO2-1 group and CeO2-3 on the apoptosis index of cardiomyocytes was not statistically remarkable (P> 0.05). It can be considered that the CeO2 nanoparticles can effectively alleviate the effects of myocardial I/R injury, showing reliable clinical significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.